

KIT - Kalaignarkarunanidhi Institute of Technology

An Autonomous Institution

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai Accredited by NAAC with 'A' GRADE & NBA (AERO, CSE, ECE, EEE, MECH & MBA)

An ISO 9001: 2015 Certified Institution, Coimbatore - 641 402.

Regulations, Curriculum & Syllabus - 2023

(For Students admitted from the Academic Year 2023-24 and onwards)

MASTER OF ENGINEERING DEGREE IN

VLSI DESIGN

Department of Electronics and Communication Engineering PG – VLSI Design

Conceptual Framework (For Students admitted from theAcademicYear2023-24onwards)

Semester	Level of Course	Hours /Week	No of Courses	Range of Credits/ Courses	Total Credits
	PAR	ГΙ			
A – Foundat	ion Courses				
I	Foundation Courses (FC)	4	1	4	4
B - Professi	onal Core Courses				
I to III	Professional Core(PC)	3	11	2-3	31
C - Elective	Courses				
II to III	Professional Elective(PE)	3	5	3	15
D - Project \	Nork				
III & IV	Project Work(PW)	12-24	2	6-12	18
	PART II- Career Enhancen	nent Cours	es(CEC)		
II	Article Writing and Seminar	2	1	1	1
	Total Credit				69

Spring.

	Curriculum and Sche	me of Ass	essm	ent						
	(For Students admitted from the Acad	lemic Yea	r 2023	-24 a	and c	nwa	rds)			
	Seme	ester I								
Course Code	Course Name	СТ		truct	iona	al Ho	urs		ssessn	nent
			CP	L	Т	Р	С	CIA	ESE	Total
Theory / Theor	y with Practical									
M23MAT105	Graph Theory and Optimization Techniques	FC	4	3	1	0	4	40	60	100
M23VDT101	CMOS Digital VLSI Design	PC	3	3	0	0	3	40	60	100
M23VDT102	FPGA Based System Design	PC	3	3	0	0	3	40	60	100
M23VDT103	CAD for VLSI Circuits	PC	3	3	0	0	3	40	60	100
M23VDT104	Analog IC Design	PC	3	3	0	0	3	40	60	100
M23CST101	Research methodology and IPR	PC	3	3	0	0	3	40	60	100
Practical										
M23VDP101	VLSI Design Laboratory - I	PC	4	0	0	4	2	60	40	100
Total credits to be earned 21										

	Semeste	er II								
Course Code	Course Name	СТ	l I	nstru H	ucti our		I	As	sessm	ent
			СР	L	T	Р	С	CIA	ESE	Total
Theory / Theory	with Practical									
M23VDT201	Device Modeling	PC	3	3	0	0	3	40	60	100
M23VDT202	DSP Structures for VLSI	PC	3	3	0	0	3	40	60	100
M23VDT203	Low Power VLSI Design	PC	3	3	0	0	3	40	60	100
	Professional Elective-I	PE	3	3	0	0	3	40	60	100
	Professional Elective-II	PE	3	3	0	0	3	40	60	100
	Professional Elective -III	PE	3	3	0	0	3	40	60	100
Practical										
M23VDP201	VLSI Design Laboratory - II	PC	4	0	0	4	2	60	40	100
M23CEP203	Article Writing and Seminar	CEC	2	0	0	2	1	100	-	100
	Total credits to be earned						21			

	Sem	ester III								
Course Code	Course Name	СТ	Instructional Hours			ırs	Assessment			
Ocurse Ocuc							С	CIA	ESE	Total
Theory / Theor	y with Practical									
M23VDT301	Testing of VLSI Circuits	PC	3	3	0	3	3	40	60	100
	Professional Elective -IV	PE	3	3	0	3	3	40	60	100
	Professional Elective-V	PE	3	3	0	3	3	40	60	100
Practical										
M23VDP301	Project Work (Phase I)	PW	12		0	12	6	40	60	100
	Total credits to be earned									

	Semes	ter IV								
Course	Course Name CT Instruct						ırs	As	sessn	nent
Code	Counce Numb		СР	L	Т	Р	С	CIA	ESE	Total
Practical										
M23VDP401	Project Work (Phase II)	PW	24	0	0	24	12	40	60	100
	Total credits to be earned						12			

Derung

	FOUNDATIONCOURSES(FC)									
Course Code	Course Name	CT Instructional Hours Assessment								nent
Course Code	0000000		CP	L	Т	Р	С	CIA	ESE	Total
M23MAT105	Graph Theory and Optimization Techniques	FC	4	3	1	0	4	40	60	100

	PROFESSIOI	NALCOR	E(PC)								
Course Code	Course Name	СТ	Ins	truct	iona	al Ho	urs	A	Assessment		
oourse ooue			CP	L	Т	Р	С	CIA	ESE	Total	
M23VDT101	CMOS Digital VLSI Design	PC	3	3	0	0	3	40	60	100	
M23VDT102	FPGA Based System Design	PC	3	3	0	0	3	40	60	100	
M23VDT103	CAD for VLSI Circuits	PC	3	3	0	0	3	40	60	100	
M23VDT104	Analog IC Design	PC	3	3	0	0	3	40	60	100	
M23CST101	Research Methodology and IPR	PC	3	3	0	0	3	40	60	100	
M23VDP101	VLSI Design Laboratory - I	PC	4	0	0	4	2	60	40	100	
M23VDT201	Device Modeling	PC	3	3	0	0	3	40	60	100	
M23VDT202	DSP Structures for VLSI	PC	3	3	0	0	3	40	60	100	
M23VDT203	Low Power VLSI Design	PC	3	3	0	0	3	40	60	100	
M23VDP201	VLSI Design Laboratory - II	PC	4	0	0	4	2	60	40	100	
M23VDT301	Testing of VLSI Circuits	PC	3	3	0	0	3	40	60	100	

Down

PROFESSIONALELECTIVE (PE)										
	SEMES	TER – II								
ELECTIVE – I										
Course Code	rse Code Course Name CT Instructional Hours Assessment									
			CP	L	Т	Р	С	CIA	ESE	Total
M23VDE201	VLSI Technology	PE	3	3	0	0	3	40	60	100
M23AEE101										100
111207 (22101	Parallel Processing	. –	Ľ	Ů	Ì	Ů				100
M23AET301	Advanced Microprocessors and Microcontrollers Architecture	PE	3	3	0	0	3	40	60	100
M23AEE103	Neural Networks and Applications	PE	3	3	0	0	3	40	60	100
	SEMES	TER – II								
	ELECT	IVE – II								
M23VDE202	DSP Integrated Circuits	PE	3	3	0	0	3	40	60	100
M23VDE203	Nano Electronics	PE	3	3	0	0	3	40	60	100
M23AEE201	High Performance Networks	PE	3	3	0	0	3	40	60	100
M23AEE202	Wireless Adhoc and Sensor Networks	PE	3	3	0	0	3	40	60	100

	SEMES	TER – II								
	ELECT	IVE – III								
Course Code	Course Name	СТ	Inst	ruct	iona	I Ho	urs	As	ssessm	nent
Oourse ooue			CP	L	Т	Р	С	CIA	ESE	Total
M23VDE204	System on Chip Design	PE	3	3	0	0	3	40	60	100
M23AET201	Soft Computing and Optimization Techniques	PE	3	3	0	0	3	40	60	100
M23VDE205	Reconfigurable Architectures	PE	3	3	0	0	3	40	60	100
M23VDE206	Signal Integrity for High Speed Networks	PE	3	3	0	0	3	40	60	100

	SEMES	TER – III								
	ELECT	IVE – IV								
Course Code	Course Name	СТ	Inst	ruct	iona	I Ho	urs	A:	ssessm	ent
Course Code			СР	L	Т	Р	С	CIA	ESE	Total
M23VDE301	Principles of Remote Sensing	PE	3	3	0	0	3	40	60	100
M23AEE303	Advanced Digital Image Processing	PE	3	3	0	0	3	40	60	100
M23AEE304	Pattern Recognition	PE	3	3	0	0	3	40	60	100
M23AET202	Embedded System Design	PE	3	3	0	0	3	40	60	100

	SEME	STER - II	l							
	ELEC	TIVE – V								
Course Code	Course Name	СТ	Ins	truc	tiona	al Ho	urs	A	ssessm	ent
Oodise oode			CP	L	Т	Р	С	CIA	ESE	Total
M23VDE305	MEMS and NEMS	PE	3	3	0	0	3	40	60	100
M23AET203	Hardware-Software Co-Design	PE	3	3	0	0	3	40	60	100
M23AEE205	Robotics	PE	3	3	0	0	3	40	60	100
M23VDE306	Machine Learning and Algorithm design	PE	3	3	0	0	3	40	60	100
	PROJEC1	WORK	(PW)							
Course Code	Course Name	СТ	Inst	ruct	iona	l Hou	ırs	A	ssessm	ent
Course Coue	CP L T P C CIA ESE Total									
M23VDP301	Project Work(Phase I)	PW	12	0	0	12	6	40	60	100
M23VDP401	Project Work(Phase II)	PW	24	0	0	24	12	40	60	100

	CAREER ENHANCE	MENT C	OURS	E(CE	EC)					
Course Code	Course Name	СТ	Inst	ructi	iona	Ι Ηοι	ırs	As	sessn	nent
Course Code	000.000.000.000		СР	L	Т	Р	С	CIA	ESE	Total
M23CEP203	Article Writing and Seminar	CEC	2	0	0	2	1	100	-	100

R2023------KIT- Kalaignarkarunanidhi Institute of Technology

	M23MAT105 GRAPH THEORY AND OPTIMIZATION	L	Т	Р	С
M.E. VLSI	TECHNIQUES	3	1	0	4

	Course Objectives
1.	To understand and apply the fundamental concepts in graph theory.
2.	To determine spanning tree, employ the algorithms to find minimum spanning tree, shortest path of a graph and maximum flow.
3.	To formulate and solve LPP.
4.	To solve transportation and assignment problems.
5.	To introduce network modeling for planning and scheduling the project activities.

UNIT - I GRAPH THEORY

12

Common families of graphs, degree sequence, handshaking lemma, Havel-Hakimi theorem (statement only). Walk, trail and path, connected graph, distance, radius and diameter. Graph isomorphism. Representations of graphs - adjacency and incidence lists - adjacency and incidence matrices.

UNIT - II GRAPH ALGORITHMS

12

Trees, spanning trees. Search algorithms - depth first search and breadth first search, spanning tree algorithm - Kruskal's and Prim's, shortest path algorithm - Dijkstra's flow networks: flows and cuts in networks, solution of the maximum - flow problem - characterization of maximum flow - Max-flow Mincut Theorem (statement only), algorithms - maximum flow, augmenting path, and FFEK - maximum flow.

UNIT - III LINEAR PROGRAMMING

12

Mathematical Formulation of LPP - Graphical solution to Linear Programming Problems - Simplex method – Big M method - Two phase method – Principles of Duality - Dual Simplex Method.

Approved By BoS Chairman

Spring

UNIT - IV TRANSPORTATION AND ASSIGNMENT PROBLEM

Mathematical formulation of transportation problem - Methods for finding initial basic feasible solution - optimum solution - degeneracy - Mathematical formulation of assignment models - Hungarian Algorithm.

UNIT - V NETWORK ANALYSIS

12

12

Network Construction - Critical Path Method - Project Evaluation and Review Technique - Resource Analysis in Network Scheduling.

Total Instructional hours: 60

	Course Outcomes: Students will be able to
CO1	Make use of principles and concepts of graph theory in practical situations
CO2	Apply minimum cost spanning tree algorithm on the graph and apply single source shortest path
	to find the shortest path from source vertex.
CO3	Constructs linear programming model.
CO4	Solve transportation and assignment problems to get the optimal solutions.
CO5	Construct the network modeling for planning and scheduling the project activities.

	Reference Books
1.	Douglas B West, "Introduction to graph Theory", Pearson Education, New Delhi, 2018.
2.	Narasingh Deo, "Graph Theory: with applications to engineering and computer science", PHI Learning, 2017.
3.	Taha, H.A., "Operations Research: An Introduction", Pearson education, Asia, New Delhi, 9 th Edition, 201 <i>6</i> .
4.	Kambo N.Singh., "Mathematical Programming Techniques", East – West Press, New Delhi, 2012.
5.	N. D Vohra, Quantitative Techniques in Management, TataMcgraw Hill, 5 th Edition, 2017.

M.E.	M23VDT101-CMOS DIGITAL VLSI DESIGN	L	Т	Р	С
IVI.L.	(Common to VLSI & AE)	3	0	0	3

	Course Objectives
1.	To introduce the principle of operation of CMOS inverter.
2.	To study the concept of combinational logic circuits.
3.	To study the concept of sequential logic circuits.
4.	To introduce the architectures of VLSI system.
5.	To learn about the interconnect and clocking process.

UNIT-I	MOS TRANSISTOR PRINCIPLES AND CMOS INVERTER	9

MOS(FET)Transistor Characteristic under Static and Dynamic Conditions, MOS Transistor Secondary Effects, Process Variations, Technology Scaling, Internet Parameter and electrical wise models CMOS Inverter - Static Characteristic, Dynamic Characteristic, Power, Energy and Energy Delay parameters.

UNIT-II COMBINATIONAL LOGIC CIRCUITS	9
--------------------------------------	---

Propagation Delays, Stick diagram, Layout diagrams, Examples of combinational logic design, Elmore's constant, Dynamic Logic Gates, Pass Transistor Logic, Power Dissipation, Low Power Design principles.

		9
UNIT-III	FIELD EFFECT TRANSISTORS	

Drain and Transfer characteristics, Current equations, Pinch off voltage and significance of JFET, Drain and Transfer Characteristics, Threshold voltage, Channel length modulation of MOSFET, Comparison of MOSFET with JFET.

UNIT-IV	SPECIAL SEMICONDUCTOR DEVICES	9
---------	-------------------------------	---

MESFET, FINFET, PINFET, CNTFET, Schottky barrier diode, Zener diode, Varactor diode, Tunnel diode, LASER diode and LDR.

UNIT-V		POWER DEVICES AND DISPLAY DEVICES	9
UJT, SCR, D	iac, Triac, Power BJT,	LED, LCD, Phototransistor, Opto Coupler, Solar cel	l.
		Total Instructional ho	urs:45

	Course Outcomes: Students will be able to
CO1	Explain the V-I characteristic of PN diode
CO2	Describe the models and equivalence circuits of Bipolar Junction Transistors
CO3	Explain the characteristic of Field Effect Transistors
CO4	Operate the Special Semiconductor Devices such as MESFET, FINFET, LASER diode and LDR
	Operate the basic electronic devices such as power Bipolar Transistors, Power control devices, LED, LCD and other Optoelectronic devices

	Text Books
1.	Jan Rabaey, Anantha Chandrakasan, B Nikolic, "Digital Integrated Circuits: A Design Perspective". Second Edition, Feb 2003, Prentice Hall of India.
2.	Jacob Baker "CMOS: Circuit Design, Layout, and Simulation, Third Edition", Wiley IEEE Press 2010 3rd Edition.

	Reference Books
1.	M J Smith, "Application Specific Integrated Circuits", Addisson Wesley, 1997.
2.	N.Weste, K. Eshraghian, "Principles of CMOS VLSI Design". Second Edition, 1993 Addision Wesley.

M.E	M23VDT102 - FPGA BASED SYSTEM DESIGN	L	Т	Р	С
		3	0	0	3

	Course Objectives
1.	To understand the automated design flow for designs with FPGAs
2.	To understand the Digital system design using HDL.
3.	To understand the FPGA architecture, interconnect and technologies.
4.	To analyze the area and power of the architectures
5.	To understand configuring and implementing digital embedded system on FPGA.

UNIT-I	FPGA DESIGN FLOW AND ARCHITECTURES	9
--------	------------------------------------	---

Digital IC design flow-The role of FPGAs in digital design—Goals and techniques—Hierarchical design—CAD Tools. FPGA architectures—Configurable logic blocks-configurable I/O blocks— Programmable interconnect—clock circuitry—Xilinx FPGA architecture—Programming Technologies: Antifuse, SRAM, EPROM, EEPROM.

UNIT-II	VERILOG HDL	9
---------	-------------	---

HDL overview-Modules and ports-compiler directives-data types-operands and operators-gate level modeling-data flow modeling-behavioral modeling-structural modeling-primitives-Tasks and functions-Writing test bench.

FIMING ISSUES 9
T

High Throughput - Low Latency - Timing - Add Register Layers, Parallel Structures, Flatten Logic Structures, Register Balancing, reorder Paths. CLOCKING AND METASTABILITY: Set up time hold time—setup time hold time violations-critical path-calculation of maximum clock frequency—meta stability—synchronizers design examples.

UNIT-IV	ARCHITECTING AREA AND POWER	9
---------	-----------------------------	---

Architecting Area - Rolling Up the Pipeline - Control-Based Logic Reuse - Resource Sharing - Impact of Reset on Area - Resources Without Reset, Resources Without Set, Resources Without Asynchronous Reset, Resetting RAM, Utilizing Set/Reset Flip-Flop Pins. Architecting Power - Clock Control, Clock Skew, Managing Skew, Input Control, Reducing the Voltage Supply, Dual-Edge Triggered Flip- Flops, Modifying Terminations.

UNIT-V	EMBEDDED SYSTEM DESIGN WITH FPGA	9
--------	----------------------------------	---

Processors - Interfaces - Zynq System-on-chip Development - IP based Design - Hardware-Software Co-design for Zynq - Software Development Tools - Real-time Applications.

Total Instructional hours:45

	Course Outcomes: Students will be able to
CO1	Understand the design mode, method, criterion and steps of FPGA design
CO2	Design and model different digital circuits with HDL
CO3	Learning the performance specification of FPGA architecture
CO4	Analyze the architecture of FPGA
CO5	Understanding about the concept of Embedded system with FPGA

Text Books

- 1. Michael D. Ciletti, "Advanced Digital Design with the Verilog HDL", Second Edition, Pearson, 2011.
- Steve Kilts, "Advanced FPGA Design Architecture, Implementation, and Optimization", First Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2007.

Reference Books

- 1. Crockett H. Louise, Ross A. Elliot, Martin A. Enderwitz, "The Zynq Book Embedded Processing with the ARM Cortex-A9 on the Xilinx Zynq-7000 All Programmable SoC", First Edition, Strathclyde Academic Media, 2014.
- 2. Charlet H. Roth, Lizy Kurian John, ByeongKil Lee, "Digital Systems Design using Verilog", Cengage Learning, 2016.
- 3. Zainalabedin Navabi, "Verilog Digital System Design", Second Edition, McGraw-Hill Education, 2005.
- 4. Ming-Bo Lin, "Digital System Designs and Practices: Using Verilog HDL and FPGAs", First Edition, Wiley, 2008.

	M23VDT103- CAD FOR VLSI CIRCUITS	L	Т	Р	С
M.E.	(Common to VLSI & AE)	3	0	0	3

	Course Objectives
1.	To introduce the VLSI Design methodologies.
2.	To study the algorithms related to placement and partitioning.
3.	To study the various routing and floor planning algorithms.
4.	To learn the synthesis processes understand VLSI design automation tools.
5.	To study the high level synthesis.

UNIT-I	INTRODUCTION TO VLSI DESIGN FLOW	9

Introduction to VLSI Design methodologies, Basics of VLSI design automation tools, Algorithmic Graph Theory and Computational Complexity, Tractable and Intractable problems, General purpose methods for combinatorial optimization.

UNIT-II	LAYOUT, PLACEMENT AND PARTITIONING	9
---------	------------------------------------	---

Layout Compaction, Design rules, Problem formulation, Algorithms for constraint graph compaction, Placement and partitioning, Circuit representation, Placement algorithms, Partitioning.

Floor planning concepts, Shape functions and floor plan sizing, Types of local routing problems, Area routing, Channel routing, Global routing, Algorithms for global routing.

Simulation, Gate-level modeling and simulation, Switch-level modeling and simulation, Combinational Logic Synthesis, Binary Decision Diagrams, Two Level Logic Synthesis.

UNIT-V	HIGH LEVEL SYNTHESIS	9
UNII-V		9

Hardware models for high level synthesis, internal representation, allocation, assignment and scheduling, scheduling algorithms, Assignment problem, High level transformations.

Total Instructional hours:45

	Course Outcomes: Students will be able to	
CO1	Outline the flow of VLSI design	
CO2	Explain the algorithms related to placement and partitioning and layout rules	
CO3	Outline floor planning and routing	
CO4	Explain Simulation and Logic Synthesis	
CO5	Examine the hardware models for high level synthesis	

Text Books

- 1. N.A. Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer Academic Publishers, 2002.
- 2. S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley & Sons, 2002.

Reference Books

- 1. Sadiq M. Sait, Habib Youssef, "VLSI Physical Design automation: Theory and Practice", World Scientific, 1999.
- 2. Steven M.Rubin, "Computer Aids for VLSI Design", Addison Wesley Publishing, 1987.

		L	T	Р	С
M.E.	M23VDT104 - ANALOG IC DESIGN	3	0	0	3

	Course Objectives
1.	To study MOS devices modeling and scaling effects.
2.	To familiarize the design of single stage and multistage MOS amplifier.
3.	To learn and analysis frequency responses of MOS amplifiers.
4.	To introduce the concept of current mirror.
5.	To study the OPAMP circuits.

UNIT-I	MOSFET METRICS	9
• • • • • • • • • • • • • • • • • • • •		

Simple long channel MOSFET theory — SPICE Models — Technology trend, Need for Analog design - Sub-micron transistor theory, Short channel effects, Narrow width effect, Drain induced barrier lowering, Sub-threshold conduction, Reliability, Digital metrics, Analogmetrics, Smallsignal parameters, Unity Gain Frequency, Miller "sapproximation."

UNIT-II SINGLE STAGE AND TWO STAGE AMPLIFIERS 9

Single Stage Amplifiers – Common source amplifier with resistive load, diode load, constant current load, Source degeneration Source follower, Input and output impedance, Common gate amplifier - Differential Amplifiers — differential and common mode response, Input swing, gain, diode load and constant current load - Basic Two Stage Amplifier, Cut-off frequency, poles and zeros.

UNIT-III FREQUENCY RESPONSE OF SINGLE STAGE AND TWO STAGE AMPLIFIERS

Frequency Response of Single Stage Amplifiers — Noise in Single stage Amplifiers — Stability and Frequency Compensation in Single stage Amplifiers, Frequency Response of Two Stage Amplifiers,—Noise in two stage Amplifiers— Stability, gain and phase margins, Frequency Compensation in two stage Amplifiers, Effect of loading in feedback networks.

UNIT-IV CURRENT MIRRORS AND REFERENCE CIRCUITS 9

Cascode, Negative feedback, Wilson, Regulated cascode, Band gap voltage reference, Constant Gm biasing, supply and temperature independent reference, curvature compensation, trimming, Effect of transistor mismatch in analog design.

UNIT-V OPAMPS 9

Gilbert cell and applications, Basic two stage OPAMP, two-pole system response, common mode and differential gain, Frequency response of OPAMP, CMFB circuits, slew rate, power supply rejection ratio, random offset, systematic offset, Noise, Output stage, OTA and OPAMP circuits-Low voltage OPAMP.

Total Instructional hours:45

	Course Outcomes: Students will be able to	
CO1	Explain the basics of MOSFET circuits	
CO2	Analyze the input and output impedances of stage amplifiers	
CO3	Examine the Stability, frequency response and Noise in MOS amplifiers	
CO4	Design the current mirror and reference circuits	
CO5	Explain the characteristics of OPAMP	

Text Books 1. Behzad Razavi, "Design of Analog CMOS Integrated Circuits", McGraw Hill, 2000. 2. Philip E. Allen, "CMOS Analog Circuit Design", Oxford University Press, 2013.

	Reference Books		
1.	Paul R.Gray, "Analysis and Design of Analog Integrated Circuits", Wiley Student edition,		
	5 th edition, 2009.		
2.	R.Jacob Baker, "CMOS: Circuit Design, Layout, and Simulation", Wiley Student Edition,		
	2009.		

M.E. M23CST101 - RESEARCH METHODOLOGY AND IPR (Common to VLSI & AE)

L T P C

3 0 0 3

Course Objectives

1. To impart knowledge on formulation of research problem, research methodology, ethics involved in doing research and importance of IPR protection.

UNIT-I RESEARCH DESIGN 9

Overview of research process and design, Use of Secondary and exploratory data to answer the research question, Qualitative research, Observation studies, Experiments and Surveys

UNIT-II DATA COLLECTION AND SOURCES 9

Measurements, Measurement Scales, Questionnaires and Instruments, Sampling and methods. Data - Preparing, Exploring, examining and displaying.

UNIT-III DATA ANALYSIS AND REPORTING

Overview of Multivariate analysis, Hypotheses testing and Measures of Association. Presenting Insights and findings using written reports and oral presentation.

UNIT-IV INTELLECTUAL PROPERTY RIGHTS 9

Intellectual Property – The concept of IPR, Evolution and development of concept of IPR, IPR development process, Trade secrets, utility Models, IPR & Bio diversity, Role of WIPO and WTO in IPR establishments, Right of Property, Common rules of IPR practices, Types and Features of IPR Agreement, Trademark, Functions of UNESCO in IPR maintenance.

Patents – objectives and benefits of patent, Concept, features of patent, Inventive step, Specification, Types of patent application, process E-filling, Examination of patent, Grant of patent, Revocation, Equitable Assignments, Licences, Licensing of related patents, patent agents, Registration of patent agents

Total Instructional hours:45

Course Outcomes: Students will be able to CO1 Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity. CO2 Understand research problem formulation & Analyze research related information and Follow

- research ethics.
- CO3 Correlate the results of any research article with other published results. Write a review article in the field of engineering.
- Appreciate the importance of IPR and protect their intellectual property. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

Cooper Donald R, Schindler Pamela S and Sharma JK, "Business Research Methods", Tata McGraw Hill Education, 11e (2012). Catherine J. Holland, "Intellectual property: Patents, Trademarks, Copyrights, Trade Secrets", Entrepreneur Press, 2007.

	Reference Books
1.	David Hunt, Long Nguyen, Matthew Rodgers, "Patent searching: tools & techniques", Wiley, 2007.
2.	The Institute of Company Secretaries of India, Statutory body under an Act of parliament,
	"Professional Programme Intellectual Property Rights, Law and practice", September 2013.

M.E	M23VDP101-VLSI DESIGN	L	Т	Р	С
	LABORATORY - I	0	0	4	2

Course Objectives

- The laboratory based study for the entire program is clubbed under three categories. One is the FPGA based design methodology; the second is the simulation of analog building blocks, and analog and digital CAD design flow. Experiments pertaining to the former two topics are covered in this lab course and those pertaining to the latter will be covered in VLSI Design Lab II.
- PPGAs are important platform used throughout the industry both in their own right in building complete systems. They are also used as validation/verification platforms prior to undertaking cost and time intensive design and fabrication of custom VLSI designs. Starting from high level design entry in the form VHDL/Verilog codes, the students will be carrying out complete hardware level FPGA validation of important digital algorithms. In addition, exercises on the SPICE simulation of the basic CMOS analog building blocks will be carried out.

	List of Experiments
Expt.No.	Description of the Experiments(Any 8 experiments)
1.	Understanding Synthesis principles. Back annotation
2.	Test vector generation and timing analysis of sequential and combinational logic design realized using HDL languages.
3.	FPGA realtime programming and I/O interfacing
4.	Interfacing with Memory modules in FPGA Boards.
5.	Verification of design functionality implemented in FPGA by capturing the signal in DSO.
6.	Real time application development
7.	Design Entry Using VHDL or Verilog examples for Digital circuit descriptions using HDL languages sequential, concurrent statements and structural description
8.	Implementation of Traffic Light Controller using Verilog HDL
9.	Implementation of UVM protocol using Verilog HDL
	Total Instructional hours:60

	Course Outcomes: Students will be able to
CO1	Apply FPGA Concepts in realtime applications
CO2	Examine the input output interfacing of FPGA
CO3	Design a FPGA based model for signal processing
1	Develop a FPGA based real time model
C05	Outline about HDL

	LIST OF EQUIPMENT FOR A BATCH OF 30 STUDEN	NTS
SI.No.	Description of the Equipment	Quantity Required (Nos.)
1.	Xilinx/ Equivalent EDA tool	15
2.	FPGA-Altera /Sparton boards	14
3.	Logic Analyzer	4
4.	DSO	4
5.	Interface Board-ADC	1
6.	DAC	1
7.	Motor Control	2
8.	SPICE Software	15

Semester II										
Course Code	Course Name	e CT InstructionalHours				As	sessment			
			СР	L	T	P	С	CIA	ESE	Total
Theory / Theor	Theory / Theory with Practical									
M23VDT201	Device Modeling	PC	3	3	0	0	3	40	60	100
M23VDT202	DSP Structures for VLSI	PC	3	3	0	0	3	40	60	100
M23VDT203	Low Power VLSI Design	PC	3	3	0	0	3	40	60	100
	Professional Elective-I	PE	3	3	0	0	3	40	60	100
	Professional Elective-II	PE	3	3	0	0	3	40	60	100
	Professional Elective -III	PE	3	3	0	0	3	40	60	100
Practical										
M23VDP201	VLSI Design Laboratory - II	PC	4	0	0	4	2	60	40	100
M23CEP203	Article Writing and Seminar	CEC	2	0	0	2	1	100	-	100
	Total credits to be earned									

PROFESSIONALELECTIVE (PE)										
	SEMESTER - II									
	ELECT	IVE – I								
Course Code	Course Name	СТ		truc	tion	al Ho			ssessn	
			СР	L	Т	Р	С	CIA	ESE	Total
M23VDE201	VLSI Technology	PE	3	3	0	0	3	40	60	100
M23AEE101	Computer Architecture and Parallel Processing	PE	3	3	0	0	3	40	60	100
M23AET301	Advanced Microprocessors and Microcontrollers Architecture	PE	3	3	0	0	3	40	60	100
M23AEE103	Neural Networks and Applications	PE	3	3	0	0	3	40	60	100
	SEMES	TER – II								
	ELECT	IVE – II								
M23VDE202	DSP Integrated Circuits	PE	3	3	0	0	3	40	60	100
M23VDE203	Nano Electronics	PE	3	3	0	0	3	40	60	100
M23AEE201	High Performance Networks	PE	3	3	0	0	3	40	60	100
M23AEE202	Wireless Adhoc and Sensor Networks	PE	3	3	0	0	3	40	60	100

SEMESTER – II										
	ELECT	IVE – III								
Course Code	Course Name	СТ	Inst	ruct	iona	l Ho	urs	A:	ssessm	ent
Course Code			CP	L	Т	Р	С	CIA	ESE	Total
M23VDE204	System on Chip Design	PE	3	3	0	0	3	40	60	100
M23AET201	Soft Computing and Optimization Techniques	PE	3	3	0	0	3	40	60	100
M23VDE205	Reconfigurable Architectures	PE	3	3	0	0	3	40	60	100
M23VDE206	Signal Integrity for High Speed Networks	PE	3	3	0	0	3	40	60	100

Dermin

M.E.

M23VDT201-DEVICE MODELLING (Common to VLSI & AE)

L	Т	Р	C
3	0	0	3

	Course Objectives
1.	To study the MOS capacitors and to model MOS Transistors.
2.	To learn about the MOSFET characteristics.
3.	To understand the various CMOS design parameters and their impact on performance of the
	device.
4.	To study the device level characteristics of BJT transistors.

UNIT-I	MOS CAPACITORS						
Surface	Potential: Accumulation, Depletion, and Inversion, Electrostatic Potential and Cl	narge					
Distribution	in Silicon, Capacitances in an MOS Structure, Polysilicon-Gate Work Function	n and					
Depletion E	ffects, MOS under Non-equilibrium and Gated Diodes, Charge in Silicon Dioxide a	ind at					
the Silicon-	Oxide Interface, Effect of Interface Traps and Oxide Charge on Device Characteri	istics,					
High-Field	Effects, Impact ionization and Avalanche Breakdown, Band-to-Band Tunn	eling,					

Tunneling into and through Silicon Dioxide, Injection of Hot Carriers from Silicon into Silicon

Dioxide, High-Field Effects in Gated Diodes, Dielectric Breakdown.

UNIT-II MOSFET DEVICES	9
------------------------	---

Long-Channel MOSFETs, Drain-Current Model, MOSFET I–V Characteristics, Sub threshold Characteristics, Substrate Bias and Temperature Dependence of Threshold Voltage, MOSFET Channel Mobility, MOSFET Capacitances and Inversion-Layer Capacitance Effect, Short-Channel MOSFETs, Short-Channel Effect, Velocity Saturation and High-Field Transport Channel Length Modulation, Source–Drain Series Resistance, MOSFET Degradation and Breakdown at High Fields.

UNIT-III	CMOS DEVICE DESIGN	9

MOSFET Scaling, Constant-Field Scaling, Generalized Scaling, Non- scaling Effects, Threshold Voltage, Threshold-Voltage Requirement, Channel Profile Design, Non-uniform Doping, Quantum Effect on Threshold Voltage, Discrete Dopant Effects on Threshold Voltage, MOSFET Channel Length, Various Definitions of Channel Length, Extraction of the Effective Channel Length, Physical Meaning of Effective Channel Length, Extraction of Channel Length by C–V Measurements

UNIT-IV CMOS PERFORMANCE FACTORS 9

Basic CMOS Circuit Elements, CMOS Inverters, CMOS NAND and NOR Gates, Inverter and NAND Layouts, Parasitic Elements, Source–Drain Resistance, Parasitic Capacitances, Gate Resistance, Interconnect R and C, Sensitivity of CMOS Delay to Device Parameters, Propagation Delay and Delay Equation, Delay Sensitivity to Channel Width, Length, and Gate Oxide Thickness, Sensitivity of Delay to Power-Supply Voltage and Threshold Voltage, Sensitivity of Delay to Parasitic Resistance and Capacitance, Delay of Two-Way NAND and Body Effect, Performance Factors of Advanced CMOS Devices, MOSFETs in RF Circuits, Effect of Transport Parameters on CMOS Performance, Low-Temperature CMOS

UNIT-V BIPOLAR DEVICES 9

N-P-N Transistors, Basic Operation of a Bipolar Transistor, Modifying the Simple Diode Theory for Describing Bipolar Transistors, Ideal Current-Voltage Characteristics, Collector Current, Base Current, Current Gains, Ideal IC-VCE Characteristics, Characteristics of a Typical n-p-n Transistor, Effect of Emitter and Base Series Resistances, Effect of Base-Collector Voltage on Collector Current, Collector Current Falloff at High Currents, Non- ideal Base Current at Low Currents, Bipolar Device Models for Circuit and Time-Dependent Analyses Basic dc Model, Basic ac Model, Small-Signal Equivalent-Circuit Model, Emitter Diffusion Capacitance, Charge-Control Analysis, Breakdown Voltages, Common-Base Current Gain in the Presence of Base-Collector Junction Avalanche, Saturation Currents in a Transistor, Relation Between BVCEO and BVCBO.

Total Instructional hours:45

	Course Outcomes: Students will be able to
CO1	Outline the concept of MOS capacitors
CO2	Explain the operation of MOSFET with its characteristics
CO3	Design and model BJT device to desired specifications
CO4	Analyze the performance metrics of CMOS
CO5	
	Design and model BJT device to desired specifications

Text Books			
1.	BehzadRazavi, "Fundamentals of Micro electronics", Wiley Student Edition, 2 nd Edition.		
2.	JPCollinge,C.A.Collinge," Physics of Semiconductor devices", Springer 2002 Edition.		

Press, Second Edition. Reference Books Yuan Taur and Tak H. Ning, "Fundamentals of Modern VLSI Devices", Cambridge University Press, Second Edition.

	M23VDT202 - DSP STRUCTURES FOR VLSI	L	Т	Р	С
M.E.		3	0	0	3

Course Objectives		
1.	To learn typical DSP algorithms.	
2.	To introduce techniques for altering the existing DSP structures to suit VLSI implementations.	
3.	To introduce efficient design of DSP architectures suitable for VLSI.	
4.	To study about numerical strength reduction.	
5.	To learn typical DSP algorithms.	

UNIT-I	PIPELINING AND PARALLEL PROCESSING OF DIGITAL FILTERS	9

Introduction to DSP systems – Typical DSP algorithms, Data flow and Dependence graphs – critical path, Loop bound, iteration bound, longest path matrix algorithm, Pipelining and Parallel processing of FIR filters, Pipelining and Parallel processing for low power.

UNIT-II	ALGORITHMIC STRENGTH REDUCTION TECHNIQUE	9

Retiming – definitions and properties, Unfolding – an algorithm for unfolding, properties of unfolding, sample period reduction and parallel processing application, Algorithmic strength reduction in filters and transforms – 2-parallel FIR filter, 2-parallel fast FIR filter, DCT architecture, rank-order filters, Odd-Even merge-sort architecture, parallel rank-order filters.

UNIT-III ALGORITHIMIC STRENGTH REDUCTION -II 9

Fast convolution – Cook-Toom algorithm, modified Cook-Toom algorithm, Pipelined and parallel recursive filters – Look-Ahead pipelining in first-order IIR filters, Look-Ahead pipelining with powerof-2 decomposition, Clustered look-ahead pipelining, Parallel processing of IIR filters, combined pipelining and parallel processing of IIR filters.

BIT-LEVEL ARITHMETIC ARCHITECTURES

UNIT-IV

Bit-level arithmetic architectures — parallel multipliers with sign extension, parallel carry-ripple and carry-save multipliers, Design of Lyon's bit-serial multipliers using Horner's rule, bit-serial FIR filter, CSD representation, CSD multiplication using Horner's rule for precision improvement, Distributed Arithmetic fundamentals and FIR filters.

UNIT-V NUMERICAL STRENGTH REDUCTION, WAVE AND 9 ASYNCHRONOUS PIPELINING

Numerical strength reduction – sub expression elimination, multiple constant multiplication, iterative matching, synchronous pipelining and clocking styles, clock skew in edge-triggered single phase clocking, two-phase clocking, wave pipelining. Asynchronous pipelining bundled data versus dual rail protocol.

Total Instructional hours:45

9

	Course Outcomes: Students will be able to		
CO1	Outline the pipelining and parallel processing of DSP filters architectures		
CO2	Explain the first level strength reduction techniques		
CO3	Explain the first level strength reduction techniques		
CO4	Analyze the various bit level arithmetic architectures		
CO5	Explain the numerical strength reduction and pipelining process of filters		

	Text Books			
1.	Keshab K. Parhi, "VLSI Digital Signal Processing Systems, Design and implementation", Wiley, Inter science, 2007.			
2.	U. Meyer – Baese, "Digital Signal Processing with Field Programmable Gate Arrays", Springer, Second Edition, 2004.			

		L	Т	Р	С
M.E.	M23VDT203-LOW POWER VLSI DESIGN	3	0	0	3

Course Objectives		
1.	To identify sources of power in an IC.	
	To identify the power reduction techniques based on technology independent and technology dependent.	
3.	To study the low power CMOS circuits.	
4.	To learn suitable techniques for power estimation.	
5.	To design circuits with low power dissipation.	

UNIT-I	POWER DISSIPATION IN CMOS	9
--------	---------------------------	---

Physics of power dissipation in CMOS FET devices — Hierarchy of limits of power —Sources of power consumption — Static Power Dissipation, Active Power Dissipation -Designing for Low Power, Circuit Techniques for Leakage Power Reduction — Basic principle of low power design

Logic level power optimization – Circuit level low power design – Standard Adder Cells, CMOS Adders Architectures- Bi CMOS adders - Low Voltage Low Power Design Techniques, Current Mode Adders -Types of Multiplier Architectures, Braun, Booth and Wallace Tree Multipliers and their performance comparison.

UNIT-III	DESIGN OF LOW POWER CMOS CIRCUITS	9

Computer arithmetic techniques for low power system – low voltage low power static Random access and dynamic Random access memories – low power clock, Inter connect and layout design – Advanced techniques – Special techniques.

UNIT-IV	POWER ESTIMATION	9
Power Estima	ition techniques – logic power estimation – Simulation power analysis – Prob	abilistic

power analysis.

UNIT-V	SYNTHESIS AND SOFTWARE DESIGN FOR LOW POWER	9
Synthesis for low power – Behavioral level transform – software design for low power.		
Total Instructional hours:45		ours:45

	Course Outcomes: Students will be able to		
CO1	Explain the basics and advanced techniques in low power design		
CO2	Explain the concept of power optimization		
CO3	Model the low power circuits		
CO4	Analyse the power estimation techniques		
CO5	Design the software models for low power		

	Text Books
1.	AbdelatifBelaouar, Mohamed.I.Elmasry, "Low power digital VLSI design", Kluwer, 1995.
2.	A.P.Chandrasekaran and R.W.Broadersen, "Low power digital CMOS design", Kluwer, 1995.

Reference Books		
1.	DimitriosSoudris, C. Pignet, Costas Goutis, "Designing CMOS Circuits for LowPower", Kluwer, 2002.	
2.	GaryYeap, "Practical low power digital VLSI design", Kluwer, 1998.	

PROFESSIONAL ELECTIVE - I

	M23VDE201-VLSI TECHNOLOGY	L	Т	Р	С
M.E.		3	0	0	3

	Course Objectives
1.	To understand physical and chemical processes of IC fabrication technology.
2.	To learn the various lithography techniques and concepts of wafer exposure system.
3.	To understand Concepts of thermal oxidation and different solutions to diffusion equation.
4.	To Design and evaluation of diffused layers and ion implantation.
5.	To study the importance of calibration techniques for achieving precision during dataconversion.

UNIT-I	CRYSTAL GROWTH, WAFER PREPARATION, EPITAXY	9
	AND OXIDATION	

Electronic Grade Silicon, Czochralski crystal growing, Silicon Shaping, processing consideration, Vapor Phase Epitaxy, Molecular Beam Epitaxy, Silicon on Insulators, Epitaxial Evaluation, Growth Mechanism And kinetics, Thin Oxides, Oxidation Techniques and Systems, Oxide properties, Redistribution of Dopant At interface, Oxidation of Poly Silicon, Oxidation inducted Defects..

UNIT-II	LITHOGRAPHY AND RELATIVE PLASMA ETCHING	9
---------	---	---

Optical Lithography, Electron Lithography, X-Ray Lithography, Ion Lithography, Plasma properties, Feature Size control and Anisotropic Etch mechanism, relative Plasma Etching techniques and Equipments.

UNIT-III	DEPOSITION, DIFFUSION, ION IMPLEMENTATION AND	9
	METALLIZATION	

Deposition process, Polysilicon, plasma assisted Deposition, Models of Diffusion in Solids, Flick's one Dimensional Diffusion Equation – Atomic Diffusion Mechanism – Measurement techniques – Range Theory- Implant equipment. Annealing Shallow junction – High energy implantation – Physical vapors Deposition – Patterning.

UNIT-IV PROCESS SIMULATION AND VLSI PROCESS INTEGRATION 9

Natural response-Forced response-Transient response of RC,RL and RLC circuits to excitation by Step Signal, Impulse Signal and exponential sources, Complete response of RC, RL and RLC Circuits to sinusoidal excitation.

UNIT-V	ANALYTICAL, ASSEMBLY TECHNIQUES AND PACKAGING OF VLSI DEVICES	9
Analytical E	Beams - Beams Specimen interactions - Chemical methods - Package types	banking
design cons	sideration – VLSI assembly technology – Package fabrication technology	

Total Instructional hours:45

	Course Outcomes: Students will be able to
CO1	Understand the crystal growth and wafer fabrication.
CO2	Explain techniques used in lithography and plasma etching.
CO3	Design diffused layers and measurement methods.
CO4	Explain the simulation process and VLSI process integration.
CO5	Explain the techniques for assembly and packaging of ICs.

	Text Books
1.	S.M.Sze, "VLSI Technology", McGraw Hill, 2nd Edition. 2008.

	Reference Books
1.	James D Plummer, Michael D. Deal, Peter B.Griffin, "Silicon VLSI Technology: fundamentals practice and Modeling", Prentice Hall India, 2009.
2.	Wai Kai Chen, "VLSI Technology" CRC press, 2003.

M.E. M23AEE101-COMPUTERARCHITECTURE AND PARALLEL PROCESSING (Common to AE&VLSI)

L	Т	Р	С
3	0	0	3

	Course Objectives
1.	To study various types of processor architectures and the importance of scalable
	architectures.
2.	To introduce parallel processing and pipelining.
3.	To learn about the memory hierarchy
4.	To study the multiprocessor architecture
5.	To study the multicore architecture

UNIT-I	COMPUTER DESIGN AND PERFORMANCE MEASURES	9
Fundament	als of Computer Design - Parallel and Scalable Architectures - Multiproces	sors-
Multi-vector	and SIMD architectures – Multithreaded architectures – Stanford	Dash
multiproces	sor – KSR1 - Data-flow architectures - Performance Measures.	

UNIT-II	PARALLEL PROCESSING, PIPELINING AND ILP	9

Instruction Level Parallelism and Its Exploitation - Concepts and Challenges - Pipelining processors - Overcoming Data Hazards with Dynamic Scheduling – Dynamic Branch Prediction - Speculation - Multiple Issue Processors - Performance and Efficiency in Advanced Multiple Issue Processors.

UNIT-III	MEMORY HIERARCHY DESIGN	9
Memory Hi	erarchy - Memory Technology and Optimizations – Cache memory – Optimiza	ations
of Cach F	Performance – Memory Protection and Virtual Memory - Design of Me	emory
Hierarchies		

UNIT-IV	MULTIPROCESSORS	9
---------	-----------------	---

Symmetric and distributed shared memory architectures – Cache coherence issues –

Performance Issues – Synchronization issues – Models of Memory Consistency
Interconnection networks – Buses, crossbar and multi-stage switches.

UNIT-V	MULTI-CORE ARCHITECTURES	9
Software and hardware multithreading - SMT and CMP architectures - Design issues - Ca		
studies - Intel Multi-core architecture - SUN CMP architecture - IBM cell architecture-hp		
architecture	•	
	Total Instructional I	hours:45

	Course Outcomes: Students will be able to
CO1	Explain the multiprocessors and its performance measure
CO2	Explain the concept of parallel processing and pipelining
CO3	Analyze about the memory hierarchy design
CO4	Outline the issues related to multiprocessors
CO5	Compare multicore architectures
	Text Books
1.	A David E.Culler,JaswinderPalSingh,"Parallel Computing Architecture: A hardware
	/software approach", MorganKaufmann / Elsevier,1997
2.	Dimitrios Soudris, Axel Jantsch, "Scalable Multi-core Architectures:
	Design Methodologies and Tools", Springer, 2012.

	Reference Books	
1.	Hwang Briggs, "Computer Architecture and parallel processing", McGrawHill, 1984.	
2.	2. JohnL.Hennessey and David A.Patterson, "Computer Architecture— A quantitative	
	approach",MorganKaufmann/Elsevier,4th.Edition,2007.	

M.E.

M23AET301-ADVANCED MICROPROCESSORS AND MICROCONTROLLERS ARCHITECTURE (Common to AE & VLSI)

L	Т	Р	С
3	0	0	3

Course Objectives		
1.	To study 80486 and Pentium processor.	
2.	To understand CISC and RISC Architectures.	
3.	To learn ARM processor.	
4.	To learn ARM instruction set.	
5.	To study about microcontroller.	

UNII-I	80486 AND PENTIUM PROCESSOR	9
0040C DD(OCCOOD: Design programming model. Mamony organization. Data turn	
80486 PR	DCESSOR: Basic programming model – Memory organization – Data typ	ies –
Instruction	set - Addressing mode – Address translation – Interrupts –PENTIUM PROCES	SOR
Introduction	to Pentium processor architecture – Special Pentium Registers– Pentium	n
Memory Ma	anagement – Introduction to Pentium pro processor – Pentium Pro Special	
Features.		

UNIT-II	CISC AND RISC ARCHITECTURE	9
Introduction to RISC architectures: RISC Versus CISC - RISC Case studies: MIPS R4000 -		000 –
SPARC – Intel i860 - IBM RS/6000.		

UNIT-III	ARM PROCESSOR	9
Condition F	rammer's Model – Registers – Processor Modes – State of the processor lags – ARM Pipelines – Exception Vector Table – ARM Processor Familie age pipelined ARM organization–Introduction to ARM Memory Management U	es –

UNIT-IV	ARM ADDRESSING MODES AND INSTRUCTION SET	9
ARM Address	ing Modes – ARM Instruction Set Overview – Thumb Instruction Set Overview –	_

ARM Addressing Modes – ARM Instruction Set Overview – Thumb Instruction Set Overview – LPC210X ARM Processor Features, Case Study.

UNIT-V	PIC MICROCONTROLLER AND MOTOROLA 68HC11	9
	MICROCONTROLLER	
Instruction s	et, addressing modes – operating modes- Interrupt system- RTC-Serial Communic	cation
Interface -	A/D Converter PWM and UART. MOTOROLA: CPU Architecture - Instruction	set -
interrupts- Timers- I2C Interfacing –UART- A/D Converter – PWM, Case Study.		
	Total Instructional ho	urs:45

	Course Outcomes: Students will be able to
CO1	Outline the basics of 80486 processor
CO2	Explain the functionalities of CISC and RISC architecture
CO3	Analyze the functionalities of ARM processor
CO4	Outline ARM instruction set
CO5	Explain PIC microcontroller and Motorola 68HC11 microcontroller

	Text Books					
1.	Andrew Sloss, "ARM System Developers Guide", Morgan K aufmann Publishers, 2005					
	approach",Morgan Kaufmann /Elsevier,1997.					
2.	BarryBBrey, "The Intel Microprocessor, Pentium and Pentium ProProcessor, Architecture					
	Programming and Interfacing", Prentice Hall of India,2002.					

	Reference Books
1.	Daniel T abak, "Advanced Microprocessors", McGraw Hill Inc., 1995.
2.	David E Simon "An Embedded Software Primer", Pearson Education,2007.

M.E.	M23AEE103 - NEURAL NETWORKS	L	Т	Р	С
	ANDAPPLICATIONS (Common to AE & VLSI)	3	0	0	3

	Course Objectives
1.	To introduce the artificial neural network concepts.
2.	To study various types of artificial neural network architectures.
3.	To study advanced artificial neural network concepts.

UNIT-I	INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS	9
Neuro-phys	iology - General Processing Element - ADALINE - LMS learning rule - MADA	LINE
– MR2 train	ing algorithm.	

UNIT-II	BPN AND BAM	9
Back Propa	gation Network - updating of output and hidden layer weights -application of B	PN —
associative	memory - Bi-directional Associative Memory - Hopfield memory -traveling	sales
man proble	m	

UNIT-III	SIMULATED ANNEALING AND CPN	9
Annealing,	Boltzmann machine - learning - application - Counter Propagation network -	
architecture	e -training - Applications.	

UNIT-IV	SOM AND ART	9
Self organizing	ng map - learning algorithm - feature map classifier - applications - archite	cture of
Adaptive Res	onance Theory - pattern matching in ART network.	

UNIT-V	NEOCOGNITRON	9
	e of Neocognitron - Data processing and performance of architecture of spetworks for speech recognition.	acio –
	Total Instructional ho	ours:45

	Course Outcomes: Students will be able to	
CO1	Explain the concepts of neural networks and different training / learning algorithms	
CO2	Design BPNN to solve real time problems	
CO3	Apply the concept of counter propagation network for various applications	
	Illustrate problem-solving based on pattern matching with specified Self Organizing Map algorithm	
CO5	Apply spatial-temporal networks for speech recognition	

	Text Books	
1.	J.A.Freeman and B.M.Skapura,"Neural Networks, Algorithms Applications and Programming Techniques", Addison-Wesely, 2003.	
2.	LaureneFausett,"Fundamentals of Neural Networks: Architecture, Algorithms andApplications",Prentice Hall, 2004	

	Reference Books	
1.	Simon Haykin, "Neural Networks & Learning Machines", third edition Pearson Education 2011.	
2.	MartinT.Hagan,Howard B.Demuth,MarkBeale,"Neural Network Design",Thomson 2008.	

PROFESSIONAL ELECTIVE - II

	MOOVED OO DOD INTEGO ATED OLD OUTO	L	Т	Р	С
M.E.	M23VDE202-DSP INTEGRATED CIRCUITS	3	0	0	3

	Course Objectives	
1.	To familiarize the concept of DSP and DSP algorithms.	
2.	To introduction to Multirate systems and finite word length effects.	
3.	To know about the basic DSP processor architectures.	
4.	To study the synthesis of DSP architectures.	
5.	To learn the processing elements of DSP architectures.	

LINIT

UNII-I	INTRODUCTION TO DSP INTEGRATED CIRCUITS	9
Introduction	n to Digital signal processing, Sampling of analog signals, Selection of sa	ımple
frequency,	Signal- processing systems, Frequency response, Transfer functions, Signal	l flow
graphs, Filt	er structures, Adaptive DSP algorithms, DFT-The Discrete Fourier Transform	, FFT
Algorithm,	lmage coding, Discrete cosine transforms, Standard digital signal processors,	
Application	specific ICs for DSP, DSP systems, DSP system design, Integrated circuit desi	ign.

UNIT-II	DIGITAL FILTERS AND FINITE WORD LENGTH EFFECTS	9
---------	--	---

FIR filters, FIR filter structures, FIR chips, IIR filters, Specifications of IIR filters, Mapping of analog transfer functions, Mapping of analog filter structures, Multi rate systems, Interpolation with an integer factor L, Sampling rate change with a ratio L/M, Multi rate filters. Finite word length effects - Parasitic oscillations, Scaling of signal levels, Round-off noise, Measuring round-off noise, Coefficient sensitivity, Sensitivity and noise.

UNIT-III	DSP ARCHITECTURES	
		9

DSP system architectures, Standard DSP architecture-Harvard and Modified Harvard architecture. Ideal DSP architectures, Multiprocessors and multi computers, Systolic and Wave front arrays, Shared memory architectures

UNIT-IV SYNTHESIS OF DSP ARCHITECTURES 9

Synthesis: Mapping of DSP algorithms onto hardware, Implementation based on complex PEs,

Shared memory architecture with Bit – serial PEs. Combinational & sequential networks- Storage elements – clocking of synchronous systems, Asynchronous systems – FSM.

UNIT-V	ARITHMETIC UNIT AND PROCESSING ELEMENTS	9
Convention	nal number system, Redundant Number system, Residue Number System, Bit- para	llel and
Bit-Serial a	arithmetic, Digit Serial arithmetic, CORDIC Algorithm, Basic shift accumulator, Reduc	ing the
memory si	ze, Complex multipliers, Improved shift-accumulator. Case Study: DCT and FFT proc	essor
Total Instructional hours:45		

	Course Outcomes: Students will be able to
CO1	Outline the Digital Signal Processing concepts and its algorithms
CO2	Explain the concept of digital filters
CO3	Compare various DSP architectures
CO4	Analyse the DSP processor architectures and synthesis
CO5	Explain the processing elements and arithmetic unit

Text Books	
1.	B.Venkatramani,M.Bhaskar,"DigitalSignalProcessors",TataMcGraw-Hill,2002.
2.	JohnJ.Proakis,DimitrisG.Manolakis,"DigitalSignalProcessing",Pearson Education,2002.

	Reference Books		
1.	1. KeshabParhi, "VLSI Digital Signal Processing Systems design & Implementation", John Wiley &		
	Sons, 1999.		
2.	Lars Wanhammer, "DSP Integrated Circuits", Academic press, New York, 1999.		

M.E.

M23VDE203 - NANO ELECTRONICS (Common to VLSI & AE)

L	Т	Р	С
3	0	0	3

	Course Objectives
1.	To understand the semiconductor nano devices.
2.	To study the materials involved in nano devices.
3.	To learn the operation of nano thermal sensors.
4.	To understand various materials used in gas sensors.
5.	To study the operation of biosensor.

UNIT-I	SEMICONDUCTOR NANO DEVICES	9
Single Floo	tron Dovices: Nano scale MOSEET - Pescapant Tunneling Transister - S	inglo

Single-Electron Devices; Nano scale MOSFET – Resonant Tunneling Transistor - Single-Electron Transistors; Nano robotics and Nano manipulation; Mechanical Molecular Nano devices; Nano computers: Optical Fibers for Nano devices; Photochemical Molecular Devices; DNA-Based Nano devices; Gas-Based Nano devices.

UNIT-II	ELECTRONIO AND RUCTONIO MOLECULI AR MATERIALO	
	ELECTRONIC AND PHOTONIC MOLECULAR MATERIALS	9

Preparation – Electroluminescent Organic materials - Laser Diodes - Quantum well lasers:-Quantum cascade lasers- Cascade surface-emitting photonic crystal laser- Quantum dot lasers - Quantum wire lasers:- White LEDs - LEDs based on nanowires - LEDs based on nanotubes - LEDs based on nanorods - High Efficiency Materials for OLEDs- High Efficiency Materials for OLEDs - Quantum well infrared photo detectors.

UNIT-III	THERMAL SENSORS	
		9

Thermal energy sensors -temperature sensors, heat sensors - Electromagnetic sensors - electrical resistance sensors, electrical current sensors, electrical voltage sensors, electrical power sensors, magnetism sensors - Mechanical sensors - pressure sensors, gas and liquid flow sensors, position sensors - Chemical sensors - Optical and radiation sensors.

UNIT- IV GAS SENSOR MATERIALS 9	UNIT- IV GAS SENSOR MATERIALS 9
---------------------------------	---------------------------------

Criteria for the choice of materials - Experimental aspects - materials, properties, measurement of gas sensing property, sensitivity, Discussion of sensors for various gases, Gas sensors based on semiconductor devices.

UNIT- V	BIO SENSORS	
		9
Principles -	DNA based biosensors - Protein based biosensors - materials for biose	nsor
applications	- fabrication of biosensors - future potential.	
Total Instructional hours:45		

	Course Outcomes: Students will be able to
CO1	Classify the types of Nano devices
CO2	Analyze the materials used in Nano device
CO3	Explain the operation of thermal sensor
CO4	Examine the operation of gas sensor
CO5	Outline the operation of bio sensor

	Reference Books
1.	K.E. Drexler, "Nano systems", Wiley, 1992.
2.	M.C. Petty, "Introduction to Molecular Electronics", 1995.
3.	W. Ranier, "Nano Electronics and Information Technology", Wiley, 2003.

M.E.

M23AEE201- HIGH PERFORMANCE NETWORKS (Common to AE & VLSI)

L	Т	Р	С
3	0	0	3

	Course Objectives
1.	To introduce various systems related to networks.
2.	To study the applications of multimedia networks.
3.	To learn the concept of advanced networks.
4.	To study the various traffic modeling.
5.	To learn about network security in many layers and network management.

UNIT-I	INTRODUCTION	9
Review of OSI, TCP/IP; Multiplexing, Modes of Communication, Switching, Routing. SONE		IET –
DWDM – DSL – ISDN – BISDN, ATM.		

UNIT-II	MULTIMEDIA NETWORKING APPLICATIONS	9	
Streaming stored Audio and Video – Best effort service – protocols for real time interactive			
applications - Beyond best effort - scheduling and policing mechanism - integrated services -			
RSVP- diffe	RSVP- differentiated services.		

UNIT-III	ADVANCED NETWORKS CONCEPTS	
		9
VPN-Remot	e-Access VPN, site-to-site VPN, Tunneling to PPP, Security in VPN.MPLS- op	eration,
Routing, Tunneling and use of FEC, Traffic Engineering, MPLS based VPN, overlay networks- P2P		
connections		

UNIT-IV	TRAFFIC MODELLING	9
Little's theore	m, Need for modeling, Poisson modeling and its failure, Non- poisson models,	
Network perfo	ormance evaluation.	

UNIT-V	NETWORK SECURITY AND MANAGEMENT	9

Principles of cryptography – Authentication – integrity – key distribution and certification – Access control and: fire walls – attacks and counter measures – security in many layers. Infrastructure for network management – The internet standard management framework – SMI, MIB, SNMP, Security and administration – ASN.1.

Total Instructional hours:45

	Course Outcomes: Students will be able to		
CO1	Outline the basic high performance network systems		
CO2	Explain the applications of multimedia networks		
CO3	Analyse the concepts of advanced networks		
CO4	Outline the traffic modelling		
CO5	Analyse the network security methods		

	Text Books		
1.	AunuragKumar,D.MAnjunath,JoyKuri,"Communication Networking",Morgan Kaufmann Publishers,1stEdition, 2004.		
2.	Fred Halsall and Lingana Gouda Kulkarni, "Computer Networking and the Internet", fifth edition, Pearson Education, 2006.		

Reference Books		
1.	HersentGurle& Petit, "IPTelephony, packet Pored Multimedia communication Systems", Pearson	
	Education, 2003.	
2.	J.F.Kurose&K.W.Ross, "Computer Networking - A topdown approach featuring the	
	internet" Pearson,2 nd Edition,2003.	

M23AEE202 - WIRELESS ADHOC AND SENSOR M.E.

NETWORKS (Common to AE &VLSI)

L	Т	Р	С
3	0	0	3

	Course Objectives		
1.	To understand the basics ofAd-hoc, Sensor Networks and various fundamental and emerging protocols of all layers.		
2.	To study about the routing architecture of sensor networks.		
3.	To understand the nature and applications of Ad-hoc and sensor networks.		
4.	To understand various security practices and protocols of Ad-hoc and Sensor networks.		
5.	To understand the basics of Ad-hoc, Sensor Networks and various fundamental and emerging protocols of all layers.		

Fundamentals of WLANs - IEEE 802.11 Architecture - Self configuration and Auto configuration-Issues in Ad-Hoc Wireless Networks - MAC Protocols for Ad-Hoc Wireless Networks - Contention Based Protocols - TCP over Ad-Hoc networks-TCP protocol overview -TCP and MANETs – Solutions for TCP over Ad-Hoc Networks.

UNIT-II	ROUTING IN AD HOC NETWORKS	9

Routing in Ad-Hoc Networks- Introduction-Topology based versus Position based Approaches-Proactive, Reactive, Hybrid Routing Approach-Principles and issues - Location services - DREAM -Quorums based location service - Grid - Forwarding strategies - Greedy packet forwarding -Restricted directional flooding- Hierarchical Routing- Issues and Challenges in providing QoS.

UNIT-III	MAC, ROUTING & QOS IN WIRELESS SENSOR	9
	NETWORKS	

Introduction – Architecture - Single node architecture – Sensor network design considerations Energy Efficient Design principles for WSNs - Protocols for WSN - Physical Layer: Transceiver Design considerations – MAC Layer Protocols – IEEE802.15.4 Zigbee – Link Layer and Error Control issues - Routing Protocols - Mobile Nodes and Mobile Robots - Data Centric & Contention Based Networking – Transport Protocols & QOS – Congestion Control issues – Application Layer support

UNIT-IV	SENSOR MANAGEMENT	9
UNIT-IV	SENSOR MANAGEMENT	9

Sensor Management - Topology Control Protocols and Sensing Mode Selection Protocols - Time synchronization - Localization and positioning – Operating systems and Sensor Network programming – Sensor Network Simulators.

UNIT-V	SECURITY IN ADHOC AND SENSOR NETWORKS	9

Security in Ad-Hoc and Sensor networks – Key Distribution and Management – Software based Antitamper techniques – water marking techniques – Defense against routing attacks - Secure Adhoc routing protocols – Broadcast authentication WSN protocols – TESLA – Biba – Sensor Network Security Protocols – SPINS.

Total Instructional hours:45

	Course Outcomes: Students will be able to	
CO1	Explain the protocols developed for adhoc and sensor networks.	
CO2	Analyse different routing approaches	
CO3	Outline different architecture in ad hoc and sensor networks.	
CO4	Build a Sensor network environment for different type of applications	
CO5	Analyse about the security in sensor networks	

Text Books AdrianPerrig,J.D.Tygar, "Secure Broadcast Communication:In Wired and WirelessNetworks", Springer, 2006. Carlos De MoraisCordeiro, Dharma PrakashAgrawal, "Ad Hoc and Sensor Networks: Theory and Applications (2ndEdition), World Scientific Publishing, 2011.

	Reference Books	
1.	C.SivaRam Murthy and B.S.Manoj, "AdHoc Wireless Networks-Architectures and	
	Protocols",Pearson Education,2004.	
2.	C.K.Toh, "AdHoc Mobile Wireless Networks", PearsonEducation, 2002.	

PROFESSIONAL ELECTIVE - III

M.E.

M23VDE204-SYSTEM ON CHIP DESIGN (Common to VLSI & AE)

L	Т	Р	С
3	0	0	3

	Course Objectives	
1.	To introduce SoC concepts.	
2.	To study the system level modelling.	
3.	To learn the hardware/software co-design principles.	
4.	To familiar with system synthesis.	
5.	To learn the hardware/software co-verification principles.	

UNIT-I		9
	INTRODUCTION	

Introduction to SoC Design, system level design, methodologies and tools, system hardware: IO, communication, processing units, memories; operating systems: prediction of execution, real time scheduling, embedded OS, middle ware; Platform based SoC design, multiprocessor SoC and Network on Chip, Low power SoC Design.

UNIT-II	SYSTEM LEVEL MODELLING	9

System C: overview, Data types, modules, notion of time, dynamic process, basic channels, structure communication, ports and interfaces, Design with examples.

UNIT-III	HARDWARE SOFTWARE CO-DESIGN	
		9

Analysis, partitioning, high level optimisations, real-time scheduling, hardware acceleration, voltage scaling and power management; Virtual platform models, co-simulation and FPGAs for prototyping of HW/SW systems.

UNIT-	SYNTHESIS	9
IV		

System synthesis: Transaction Level Modelling (TLM) based design, automaticTLM generation and mapping, platform synthesis; software synthesis: code generation, multi task synthesis, internal and external communication; Hardware synthesis: RTL architecture, Input models, estimation and optimisation, resource sharing and pipelining and scheduling.

UNIT-V	SOC VERIFICATION AND TESTING	9

SoC and IP integration, Verification: Verification technology options, verification methodology, overview: system level verification, physical verification, hardware/software co-verification; Test requirements and methodologies, SoC design for testability - System modelling, test power dissipation, test access mechanism, Case Study.

Total Instructional hours:45

	Course Outcomes: Students will be able to	
CO1	Outline the basics of SoC design	
CO2	Explain the modelling process	
CO3	Analyse and design the software hardware models	
CO4	Explain the synthesis process	
CO5	:Design the test mechanism for SoC test and verification	

	Text Books
1.	D.Black, J.Donovan, "System C:From the Ground Up", Springer, 2004.
	D.Gajski,S.Abdi,A.Gerstlauer,G.Schirner, "Embedded System Design: Modeling, Synthesis, Verification", Springer,2009.

			R	eference Boo	ks			
1.	C.SivaRam Murthy and B.S.Manoj, "AdHoc Wireless Networks-Architectures and Protocols",							
	Pearson Edu	cation,2004.						
2.	ErikLarson,	"Introduction	to	advanced	system-on-chip	test	design	and
	optimization",	Springer,2005.						

M.E.	M23AET201-SOFT COMPUTING AND	L	Т	Р	С
	OPTIMIZATION TECHNIQUES (Common to AE & VLSI)	3	0	0	3

	Course Objectives
1.	To understand various neural networks and learning methods.
2.	To overview of Fuzzy logic.
3.	To study the concept of Neuro–Fuzzy modeling.
4.	To introduce the optimization techniques.

UNIT-I	NEURAL NETWORKS	9
Machine Le	earning using Neural Network, Learning algorithms, Supervised Learning N	eural
Networks -	Feed Forward Networks, Radial Basis Function, Unsupervised Learning N	eural
Networks -	Self Organizing map , Adaptive Resonance Architectures, Hopfield network.	

UNIT-II	FUZZY LOGIC	9

Fuzzy Sets – Operations on Fuzzy Sets – Fuzzy Relations – Membership Functions-Fuzzy Rules and Fuzzy Reasoning – Fuzzy Inference Systems – Fuzzy Expert Systems – Fuzzy Decision Making.

UNIT-III	NEURO-FUZZY MODELING	9				
Adaptive Ne	Adaptive Neuro-Fuzzy Inference Systems – Coactive Neuro-Fuzzy Modeling – Classification					
and Regression Trees – Data Clustering Algorithms – Rule base Structure Identification –Neuro-Fuzzy						
Control – Ca	ase Studies.					

UNIT-IV		CONVEN	TIONAL OPT	IMIZATION	N TECHNIQUE	S		9	
Introduction t	o optimizatio	on techniqu	es, Statem	ent of an	optimization	problem,	class	ification,	
Unconstrained	d optimization	n-gradient	search meth	nod-Gradie	nt of a fun	ction, steep	est g	gradient-	
conjugate gra	adient, Newto	on's Method	, Marquardt	Method,	Constrained	optimization	n –se	quential	
linear program	nming, Interio	r penalty fun	ction method	d, external	penalty functi	on method.			

UNIT-V	EVOLUTIONARY OPTIMIZATION TECHNIQUES	9
	orithm - working principle, Basic operators and Terminologies, Building block hypoalesman Problem, Particle swam optimization, Ant colony optimization.	othesis,
	Total Instructional ho	ours:45

	Course Outcomes: Students will be able to			
CO1	Outline the basics of neural network and learning methods			
CO2	Outline the basics of fuzzy logic			
CO3	Examine machine learning through Neural Fuzzy concept			
CO4	Explain the conventional optimization techniques			
CO5	Explain the evolutionary optimization techniques			

	Text Books
1.	DavidE.Goldberg, "Genetic Algorithms in Search, Optimization and Machine learning", Addison wesley, 2009.
2.	George J.Klir and BoYuan, "FuzzySets and FuzzyLogic-Theory and Applications", PrenticeHall, 1995.

	Reference Books
1.	James A.Freeman and David M.Skapura, "NeuralNetworks Algorithms, Applications, and
	Programming Techniques",Pearson Edn.,2003.
	Jyh-ShingRogerJang, Chuen-TsaiSun,EijiMizutani,"Neuro-Fuzzy and Soft Computing", Prentice- Hall of India,2003.

M.E.

M23VDE205 – RECONFIGURABLE ARCH ITECTURES

L	Т	Р	C
3	0	0	3

	Course Objectives	
1.	To introduce processors and architectures.	
2.	2. To learn about programmed FPGAs.	
3.	, ,	
4.	To introduce design styles for FPGA.	
5.	To familiar with SoPC designs.	

UNIT-I	INTRODUCTION	9	
Domain-spe	ecific processors, Application specific processors, Reconfigurable Comp	outing	
Systems - Evolution of reconfigurable systems - Characteristics of RCS advantages ar		and	
issues. Fur	ndamental concepts & Design steps -classification of reconfigurable architec	ture-	
fine, coarse	fine, coarse grain & hybrid architectures – Examples.		

UNIT-II	FPGA TECHNOLOGIES & ARCHITECTURE	9

Technology trends- Programming technology- SRAM programmed FPGAs, antifuse programmed FPGAs, erasable programmable logic devices. Alternative FPGA architectures: Mux Vs LUT based logic blocks – CLB Vs LAB Vs Slices- Fast carry chains- Embedded RAMs- FPGA Vs ASIC design styles.

UNIT-III	ROUTING FOR FPGAS	
		9
General Strat	egy for routing in FPGAs- routing for row-based FPGAs - segmented channel	routing,
definitions- Al	gorithm for I segment and K segment routing – Routing for symmetrical FPGAs, F	Flexibility
of FPGA Rou	uting Architectures: FPGA architectural flexibility on Routability- Effect of switch	ch block

flexibility on routability - Tradeoffs in flexibility of S and C blocks

UNIT-IV	HIGH LEVEL DESIGN	9
---------	-------------------	---

FPGA Design style: Technology independent optimization- technology mapping- Placement. High-level synthesis of reconfigurable hardware, high-level languages, Design tools: Simulation (cycle based, event driven based) – Synthesis (logic/HDL vs physically aware) – timing analysis (static vs dynamic)- verification physical design tools.

UNIT-V	APPLICATION DEVELOPMENT WITH FPGAS	9
Case Studies	Case Studies of FPGA Applications–System on a Programmable Chip (SoPC) Designs.	
	Total Instructional hor	urs:45

	Course Outcomes: Students will be able to	
CO1	Illustrate the concepts of reconfigurable architectures	
CO2	Explain the FPGA technologies	
CO3	Analyze the various routing technologies	
CO4	Explain the design styles of FPGA	
CO5	Apply the FPGA techniques in solving the real world problems	

			Tex	t Bo	oks		
1.	Christophe	Bobda,	"Introduction	to	Reconfigurable	Computing	-Architectures,
	Algorithms and A	pplications"	, Springer,201	0.			
2.	2. CliveMaxfield, "The Design Warrior'sGuidetoFPGAs:Devices,ToolsandFlows",Newnes,Elsevier,2006.						

	Reference Books
1.	Jorgen Staunstrup, Wayne WIf, "Hardware/Software Co-Design: Principles and practice", Kluwer
	Academic Pub, 1997.
2.	Maya B.Gokhale and PaulS.Graham, "Reconfigurable Computing: Accelerating Computation with
	Field-Programmable GateArrays", Springer, 2005.

M.E.

M23VDE206 - SIGNAL INTEGRITY FOR HIGH SPEED NETWORKS

L	Т	Р	С
3	0	0	3

	Course Objectives
1.	To study the various propagation requirements of transmission lines.
2.	To learn about the multiconductor transmission lines.
3.	To identify the non ideal effects of transmissionlines.
4.	To familiar about the design of transmission line system.
5.	To study the effect of oscillators in transmission lines.

UNIT-I	SIGNAL PROPAGATION ON TRANSMISSION LINES	9

Transmission line equations, wave solution, wave vs. circuits, initial wave, delay time, Characteristic impedance, wave propagation, reflection, and bounce diagrams Reactive terminations – L, C, static field maps of micro strip and strip line cross-sections, per unit length parameters, PCB layer stackups and layer/Cu thicknesses, cross-sectional analysis tools, Zo and Td equations for microstrip and stripline Reflection and terminations for logic gates, fanout, logic switching, input impedance into a transmission-line section, reflection coefficient, skin-effect, dispersion.

UNIT-II	MULTI-CONDUCTOR TRANSMISSION LINES AND CROSSTALK	9

Multi-conductor transmission-lines, coupling physics, per unit length parameters, Near and far-end cross-talk, minimizing cross-talk (stripline and microstrip) Differential signalling, termination, balanced circuits, S-parameters, Lossy and Lossless models.

UNIT-III	NON-IDEAL EFFECTS	
		9
Non-ideal signal return paths – gaps, BGA fields, via transitions , Parasitic inductance and capacitance ,		
Transmission	line losses – Rs, tano , routing parasitic, Common-mode current, differential-mode	current
, Connectors		

UNIT-IV	POWER CONSIDERATIONS AND SYSTEM DESIGN
UNII-IV	POWER CONSIDERATIONS AND STSTEM DESIGN

SSN/SSO, DC power bus design, layer stack up, SMT decoupling, Logic families, power consumption, and system power delivery, Logic families and speed Package types and parasitic, SPICE, IBIS models, Bit streams, PRBS and filtering functions of link-path components, Eye diagrams, jitter, inter-symbol interference Bit-error rate, Timing analysis.

UNIT-V	CLOCK DISTRIBUTION AND CLOCK OSCILLATORS	9

Timing margin, Clock slew, low impedance drivers, terminations, Delay Adjustments, canceling parasitic capacitance, Clock jitter.

Total Instructional hours:45

9

	Course Outcomes: Students will be able to
CO1	Make use of the wave propagation concepts
CO2	Explain about various parameters involved in wave propagation
CO3	Identify the various effects in wave propagation
CO4	Analyse the power issues, jitter and filtering in wave propagation
CO5	Analyse the clocking system for signal transmission

	Text Books
1.	DouglasBrooks, Signal Integrity Issues and Printed Circuit Board Design, Prentice Hall PTR, 2003.
2.	EricBogatin,Signal Integrity-Simplified,PrenticeHallPTR,2003.

	Reference Books			
1.	H.W.Johnson and M.Graham, High-Speed Digital Design:A Hand book of BlackMagic, Prentice			
	Hall,1993.			
2.	S. Hall, G. Hall, and J. McCall, High-Speed Digital System Design: A Handbook of Interconnect			
	Theory and DesignPractices,Wiley-Interscience,2000.			

M.E

M23VDP201-VLSI DESIGN LABORATORY - II

L	Т	Р	С
0	0	4	2

Course Objectives

1. The focus of this course the CAD based VLSI design flow. The entire VLSI design industry makes use of this design flow in some form or the other. Proficiency and familiarity with the various stages of a typical state of this design flow is a prerequisite for any student who wishes to be a part of either the industry or the research in VLSI over one full semester exposure to various stages of a typical state of the art CAD VLSI tool be provided by various experiments designed to bring out the key aspects of simulation, and power and clock routing modules. ASIC RTL realization of an available open source MCU.

List of Experiments			
Expt.No.	Expt.No. Description of the Experiments (Any 8 experiments)		
1.	To synthesize and understand the Boolean optimization in synthesis.		
2.	Static timing analyses procedures and constraints.		
3.	Critical path considerations.		
4.	Scan chain insertion, Floor planning, Routing and Placement procedures.		
5.	Power planning,Layout generation, LVS,back annotation and Total power estimate.		
6.	Analog circuit simulation.		
7.	Simulation of logic gates, Current mirrors, Current sources and Differential amplifier in Spice.		
8.	Layout generations, LVS and Back annotation		
	Total Instructional hours:60		

	Course Outcomes: Students will be able to			
CO1	Apply Boolean optimization concept			
CO2	Analyze the timing constraints and procedures			
CO3	Examine various floor planning, routing and placement procedures			
C04	Test the analog circuits.			
C05	Explain about layout generations			

	LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS	
SI.N	Description of the Equipment	Quantity
Ο.		required(Nos.)
1	CADENCE / TANNER / Mentor Graphics /Synopses/SPICE Software	15

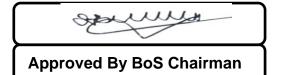
M.E.

M23CEP203-ARTICLE WRITING AND SEMINAR (Common to VLSI & AE)

L	Т	Р	C
0	0	2	1

Course Objectives

- 1. In this course, students will develop their scientific and technical reading and writing skills that they need to understand and construct research articles. A term paper requires a student to obtain information from a variety of sources (i.e., Journals, dictionaries, reference books) and then place it in logically developed ideas. The work involves the following steps:
- 1. Selecting a subject, narrowing the subject into a topic
- 2. Stating an objective.
- 3. Collecting the relevant bibliography(atleast15 journal papers)
- 4. Preparing a working outline.
- 5. Studying the papers and understanding the author's contributions and critically analyzing each paper.
- 6. Preparing a working outline
- 7. Linking the paper sand preparing a draft of the paper.
- 8. Preparing conclusions based on the reading of all the papers.
- 9. Writing the Final Paper and giving final Presentation


Activity	Instructions	Submi ssion Week	Evaluation Week
Selection of area of interest and Topic (Stating an Objective)	You are requested to select an area of interest, topic and state an objective	2 nd week	3% Based on clarity of thought, current relevance and clarity in writing
Collecting Information about your area & topic	1. List 1 Special Interest Groups or professional society 2. List 2 journals 3. List 2 conferences, symposia or workshops 4. List 1 thesis title List 3 web presences (mailing lists, forums, news sites) 6. List 3 authors who publish regularly in your area 7. Attach a call for 5. Papers (CFP) from your area.	3 rd week	3% (the selected information must be area specific and of international and national standard)

	You have to provide a		
Collection of Journal papers in the topic in the context of the objective — collect 20 & then filter	You have to provide a complete list of references you will be using-Based on your objective - Search various digital libraries and Google Scholar When picking papers To read-try to: Pick papers that are Related to each other in Some ways and/or that Are in the same field so That you can write a Meaningful survey out of them, Favour papers from well-known journals and conferences, Favour "first" or "foundational" papers in the field (as indicated in other people"s survey paper), Favour more recent papers, Pick a recent survey	4 th week	6% (the list of standard papers and reason for selection)
	to each other in Some ways and/or that Are in the same field so That you can write a Meaningful survey out of them, Favour papers from well-known journals and conferences, Favour "first" or "foundational" papers in the field (as indicated in other people"s survey paper), Favour more recent papers, Pick a recent survey of the field so you can quickly Gain an overview, Find relationships with respect to each other and to your topic area (classification Scheme / categorization) Mark in the hard copy of	-	papers and reason for
	papers whether complete work or section/sections of the paper are being considered		

Reading and notes	Reading Paper Process For each paper form a Table answering the following questions: What is the main topic of the article? What was /were the main issue(s) the author said they want to discuss? Why did the author claim it was important? How does the work build on other's work, in the author's opinion? What simplifying assumptions does the author claim to be making? What did the author do? How did the author claim they were going to evaluate their work and compare it to	5 th week	8%(the table given should indicate your understanding of the paper and the evaluation is based on your Conclusions about each paper)
-------------------	--	-------------------------	--

for first 5 papers	others? What did the author say were the limitations of their research? What did the author say were the important directions for future research? Conclude with limitations/issues not addressed by the paper(from the perspective of your survey)		
Reading and notes for next 5 papers	Repeat Reading Paper Process	6 th week	8% (the table given should indicate your understanding of the paper and the evaluation is based on your conclusions about each paper)
Reading and notes for final 5papers	Repeat Reading Paper Process	7 th week	8% (the table given should indicate your understanding of the paper and the evaluation is based on your conclusions about each paper)
Draft outline1 and Linking papers	Prepare a draft Outline, your survey goals, along with a classification /categorization diagram	8 th week	8%(this component will be evaluated based on the linking and Classification among the papers)
Abstract	Prepare a draft abstract and give a presentation	9 th week	6% (Clarity, purpose and conclusion) 6% Presentation &Viva Voce
Introduction Background	Write an introduction and background sections	10 th week	5%(clarity)
Sections of the paper	Write the sections of your paper based on the classification/categorization diagram in keeping with the Goal so of your survey	11 th week	10%(this Component will be evaluated based on the linking and classification Among the papers)
Your conclusions	Write your conclusions and future work	12 th week	5% (conclusions– clarity and your ideas)
Final Draft	Complete the final draft of your paper	13 th week	10%(formatting, English, Clarity and linking) 4% Plagiarism Check

			Report	
Seminar	A brief 15 slides on your paper	14 th & 15 th week	10% (based on presentation and Viva-voce)	

	Course Outcomes: Students will be able to							
CO1	Survey the relevant information							
CO2	Outline the importance's							
CO3	Formulate the concept							
CO4	Compare the data's with existing							
CO5	Outline about concluding remarks							

Serving.

	Semester III									
Course Code	Course Name	CT	Instructional Hours				S	Assessment		ent
Course Code	Course I (unit		CP	L	T	P	C	CIA	ESE	Total
Theory / Theory	with Practical									
M23VDT301	Testing of VLSI Circuits	PC	3	3	0	3	3	40	60	100
	Professional Elective -IV	PE	3	3	0	3	3	40	60	100
	Professional Elective-V	PE	3	3	0	3	3	40	60	100
Practical										
M23VDP301	Project Work (Phase I)	PW	12	0	0	12	6	40	60	100
	Total credits to be earned 1:						15			

	Semester IV									
Course Code	Course Name	СТ	CT Instructional Hour			al Hou	ırs	Assessment		
Course Code	Course I valle					C	CIA	ESE	Total	
Practical	Practical									
M23VDP401	Project Work (Phase II)	PW	24	0	0	24	12	40	60	100
	Total credits to be earned					12				

	SEMESTER – III									
	ELECTIVE – IV									
Course Code	Course Name	CT	I	nstru	ctiona	al Hou	rs	A	Ssessm	ent
Course Code	Course I (unit	CP CP	L	T	P	C	CIA	ESE	Total	
M23VDE301	Principles of Remote Sensing	PE	3	3	0	0	3	40	60	100
M23AEE303	Advanced Digital Image Processing	PE	3	3	0	0	3	40	60	100
M23AEE304	Pattern Recognition	PE	3	3	0	0	3	40	60	100
M23AET202	Embedded System Design	PE	3	3	0	0	3	40	60	100

	SEMESTER – III									
	EL	ECTIVE	$-\mathbf{V}$							
Course Code	Course Name	CT	Iı	nstru	ctiona	ıl Hou	rs	A	Ssessm	ent
Course Code	Course I turne	01	CP	L	T	P	C	CIA	ESE	Total
M23VDE305	MEMS and NEMS	PE	3	3	0	0	3	40	60	100
M23AET203	Hardware-Software Co-Design	PE	3	3	0	0	3	40	60	100
M23AEE205	Robotics	PE	3	3	0	0	3	40	60	100
M23VDE306	Machine Learning and Algorithm design	PE	3	3	0	0	3	40	60	100

Semester III

		M23VDT301 - TESTING OF VLSI CIRCUITS	L	Т	P	C				
B.E			3	0	0	3				
		Course Objectives								
1. To understand logic fault models.										
2. To l	learı	test generation for sequential and combinational logic circuit	ts.							
3. To i	intro	oduce testing designs.								
4. To l	learı	n testing algorithms.								
5. To s	stud	y about the fault diagnosis.								
UNIT- I		TESTING AND FAULT MODELLING				9				
Introduction	on to	o testing – Principle of testing, Types of testing - Faults	in Digit	al Circ	uits –					
Modelling	of	faults - Logical Fault Models - Fault detection - Fault Lo	cation -	– Fault	domin	ance –				
Logic sim	ulat	ion – Types of simulation – Delay models - Single stuck-at far	ults.							
UNIT- I	I	TEST GENERATION				9				
Algorithms	an	d Representations Test generation for combinational	logic	circuit	s – T	Γestable				
combination	nal	logic circuit design - Test generation for sequential circuits	s – desi	gn of to	estable					
sequential c	circu	its - Simulation for design verification, test evaluation.								
UNIT- II	II	DESIGN FOR TESTABILITY				9				
Design for	r Te	estability – Ad-Hoc DFT Methods -Scan Design– generic s	scan-ba	sed de	esign –					
classical se	can-	based design-system level DFT approaches.								
UNIT- IV	V	SELF – TEST AND TEST ALGORITHMS				9				
Built-In se	elf-t	est – test pattern generation for BIST – Circular BIS	T – E	BIST A	rchitec	tures -				
Memory B	BIST	7 - Testable Memory Design - Test Algorithms - Test genera	ation fo	or Emb	edded l	RAMs.				
UNIT- V	7	FAULTDIAGNOSIS				9				
Diagnostic	Tes	t - Logical Level Diagnosis - Diagnosis by UUT reduc	ction –	Fault	Diagno	osis for				
Combinatio	onal	Circuits- Self-checking design - System Level Diagnosis.								
				, •		4=				
		Tot	tal Inst	ruction	al hou	rs: 45				

Reference Books					
1.	A.L.Crouch, "Design Test for Digital ICs and Embedded Core Systems", Prentice Hall				
	International, 2002.				
2.	M. Abramovici, M.A.Breuer and A.D. Friedman, "Digital systems and Testable Design", Jaico				
	Publishing House, 2002.				
3.	M.L. Bushnell and V.D. Agrawal, "Essentials of Electronic Testing for Digital, Memory and				
	Mixed - Signal VLSI Circuits", Kluwer Academic Publishers, 2002.				
4.	P.K. Lala, "Digital Circuit Testing and Testability", Academic Press, 2002.				

	Course Outcomes: Students will be able to		
CO1	Outline the testing and fault modelling.		
CO2	Explain the test generation for combinational and sequential circuits.		
CO3	Analyse the various testing designs.		
CO4	Outline the use of the testing algorithm.		
CO5	Explain fault diagnosis.		

M.E.	M23VDE301 - PRINCIPLES OF REMOTE SENSING	L	T	P	C
		3	0	0	3

Course Objectives		
1.	To learn physics of remote sensing.	
2.	To learn data acquisition.	
3.	To study about microwave remote sensing.	
4.	To study the principles of thermal sensing.	
5.	To learn different technique in data analysis.	

UNIT – I PHYSICS OF REMOTE SENSING 9

Introduction of Remote Sensing - Electro Magnetic Spectrum, Physics of Remote Sensing - Effects of Atmosphere - Scattering - Different types - Absorption - Atmospheric window - Energy interaction with surface features - Spectral reflectance of vegetation, soil and water - atmospheric influence on spectral response patterns - multi concept in Remote sensing.

UNIT – II DATA ACQUISITION 9

Types of Platforms – different types of aircrafts - Manned and Unmanned space crafts – sun synchronous and geo synchronous satellites – Types and characteristics of different platforms – LANDSAT, SPOT, IRS, INSAT, IKONOS, QUICKBIRD etc - Opto mechanical and electro optical sensors – multi spectral scanners and thermal scanners – geometric characteristics of scanner imagery - calibration of thermal scanners.

UNIT – III SCATTERING SYSTEM 9

Microwave scatterometry – types of RADAR – SLAR – resolution - range and azimuth – real aperture and synthetic aperture RADAR. Characteristics of Microwave images - topographic effect - different types of Remote Sensing platforms – airborne and space borne sensors – ERS, JERS, RADARSAT, RISAT - Scatterometer, Altimeter- LiDAR remote sensing, principles, applications.

Sensors characteristics - principle of spectroscopy - imaging spectroscopy - field conditions, compound spectral curve, Spectral library, radiative models, processing procedures, derivative spectrometry, thermal remote sensing – thermal sensors, principles, thermal data processing, applications.

UNIT – V DATA ANALYSIS 9

Resolution – Spatial, Spectral, Radiometric and temporal resolution - signal to noise ratio - visual and digital interpretation – Basic principles of data processing - Radiometric correction - Image enhancement - Image classification – Image Processing software – data merging and biophysical modeling.

Total Instructional hours: 45

Course Outcomes : Students will be able to		
CO1	Explain the basic concepts behind remote sensing.	
CO2	Examine the data acquisition process of remote sensing.	
CO3	Explain the concepts of microwave remote sensing.	
CO4	Analyse the sensors used in thermal sensing and its principles.	
CO5	Outline remote sensing data analysis methods.	

Reference Books			
	Lillesand T.M, and Kiefer, R.W, "Remote Sensing and Image interpretation", VI Edition of		
1.	JohnWiley & Sons, 2000.		
	John R. Jensen, "Introductory Digital Image Processing: A Remote Sensing Perspective", 2nd		
2.	Edition, 1995.		
3.	John A.Richards, "Remote Sensing Digital Image Analysis", Springer –Verlag,1999		
4.	Paul Curran P.J, "Principles of Remote Sensing", ELBS, 1995.		
	Charles Elachi and Jakob J. van Zyl, "Introduction To The Physics and Techniques of Remote		
5.	Sensing", Wiley Series in Remote Sensing and Image Processing, 2006.		
6.	Sabins, F.F.Jr, "Remote Sensing Principles and Image interpretation", W.H.Freeman & Co, 1978.		

		M23AEE303 – ADVANCED DIGITAL	L	Т	P	C			
	B.E	IMAGE PROCESSING		0	0	3			
Course Objectives									
1. To understand the fundamentals of digital image processing.									
2. To learn concept of color image processing technique.									
3. To learn morphological image processing algorithms.									
4. To learn segmentation algorithms and descriptors for image processing.									
5. To study object recognition and image processing applications.									
UNIT- I FUNDAMENTALS OF DIGITAL IMAGE						9			

Elements of Visual Perception- Image acquisition, digitization- Histogram - Image enhancement – Spatial filters for smoothing and sharpening – Discrete 2D transforms - DFT, DCT, Walsh-Hadamard, Slant, KL, Wavelet Transform – Haar wavelet.

PROCESSING

UNIT- II COLOR IMAGE PROCESSSING

9

Color Image Fundamentals-Color Models- RGB, CMY, CMYK and HSI Color Models- Pseudocolor Image Processing - Intensity Slicing- Intensity to Color transformations -Basics of Color Image Processing- Color Transformation - Color Image Smoothing and Sharpening- Color Segmentation - Noise in Color Images.

UNIT- III MORPHOLOGICAL IMAGE PROCESSING 9

Preliminaries- Basic Concepts from Set Theory-Logic Operations Involving Binary Images - Dilation and Erosion –Opening and Closing - Hit-or-Miss Transformation - Basic Morphological Algorithms - Boundary Extraction- Region Filling- Extraction of Connected Components- Convex Hull- Thinning-Thickening- Skeletons- Pruning- - Gray-Scale Morphology, Case Study

UNIT- IV SEGMENTATION, REPRESENTATION AND DESCRIPTION 9

Edge Detection - Edge Linking and Boundary Detection -Thresholding- Segmentation by Morphological Watershed Segmentation Algorithm - Use of Markers- Representation and Boundary Descriptors, Case Study.

UNIT- V 3D IMAGE VISUALIZATION 9

Sources of 3D Data sets, Slicing the Data set, Arbitrary section planes, The use of color, Volumetric display, Stereo Viewing, Ray tracing, Reflection, Surfaces, multiply connected surfaces, Image processing in 3D, Measurements on 3D images.

Total Instructional hours: 45

Approved By Chairman

	Reference Books						
1.	Rafael C. Gonzalez, "Digital Image Processing", Pearson Education, Inc., 3 rd Edition,						
1.	2008.						
2	Milman Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis and Machine						
2.	Vision", Brooks/Cloe, Vikas Publishing House 2 nd Edition, 1999.						
2	Khalid Sayood, "Data Compression", Morgan Kaufmann Publishers (Elsevier)., 3rd						
3.	Edition, 2006.						
4	Rafael C. Gonzalez, Richards E. Woods, Steven Eddins, "Digital Image Processing						
4.	using MATLAB", Pearson Education, Inc., 2004.						
5.	Willam K.Pratt, "Digital Image Processing", John Wiley, New York, 2002.						
	Rick S.Blum, Zheng Liu," Multisensor image fusion and its Applications", Taylor & Francis,						
6.	2006.						

	Course Outcomes: Students will be able to						
CO1	Explain about image acquisition, digitization and spatial filters for enhancement						
CO2	Outline color image processing techniques						
CO3	Apply morphological image processing algorithms						
CO4	Apply segmentation algorithms and descriptors for image processing						
	Examine neural networks, fuzzy logic, genetic algorithms in object recognition, compression, watermarking and steganography algorithms to images						

Approved By Chairman

			L	Т	P	C			
]	B.E	M23AEE304 - PATTERN RECOGNITION 3 0 0							
	Course Objectives								
1.	To lear	urn about supervised pattern classifiers.							
2.	To lear	rn about unsupervised pattern classifiers.							
3.	To fam	niliarize about different feature extraction techniques.							
4.	To exp	lore the role of Hidden Marko model and SVM in pattern reco	ognition	l .					
5.	To stud	ly the application of Fuzzy logic and Neural Network for patte	ern class	sifier.					
UNI	T- I	PATTERN CLASSIFIER				9			
Overv	iew of P	attern recognition – Discriminant functions – Supervised lear	ning –P	arametı	ric estin	nation			
– Max	kimum I	Likelihood Estimation - Bayes Theorem - Bayesian Belief	f Netwo	ork, Na	ive Bay	yesian			
Classi	fier.								
UNI	Γ- II	CLUSTERING							
Cluste	ring for	unsupervised learning and classification-Clustering conce	pt-Type	s of C	lusterin	ng – C			
Means	algorit	nm –Hierarchical clustering – Graph theoretic approach to p	attern (Clusteri	ng – V	alidity			
of Clu	sters.								
UNIT	г- III	FEATURE EXTRACTION AND STRUCTU PATTERN RECOGNITION	JRAL			9			
Principl	e comp	onent analysis, Independent component analysis, Linear dis	scrimina	int ana	lysis, F	eature			
selectio	n throug	gh functional approximation – Elements of formal gramm	ars, Syı	ntactic	descrip	tion –			
Stochas	tic gram	mars – Structural Representation, Case Study.							
UNIT	Γ- IV	HIDDEN MARKOV MODELS AND SUPPORT MACHINE	VECT()R		9			
State M	achines	– Hidden Markov Models – Training – Classification – Supp	ort vect	tor Mac	hine –	Feature			
Selectio	on, SVM	Applications.							
UNIT- V RECENT ADVANCES									
Fuzzy S	et Theo	ry, Fuzzy and Crisp Classification, Fuzzy Clustering, - Fuzz	y Patter	n Class	ifiers –	Pattern			
Classifi	cation u	sing Genetic Algorithms – Case Study Using Fuzzy Pattern	n Classi	fiers ar	nd Perc	eption-			
Elemen	tary Neu	ral Network for Pattern Recognition-ADALINE.							
Total Instructional hours: 45									

Approved By Chairman

	Reference Books						
1.	Andrew Webb, "Stastical Pattern Recognition", Arnold publishers, London, 1999.						
2.	C.M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.						
3.	M. Narasimha Murthy and V. Susheela Devi, "Pattern Recognition", Springer, 2011.						
4.	Menahem Friedman and Abraham Kandel, "Introduction to Pattern Recognition Statistical,						
4.	Structural, Neural and Fuzzy Logic Approaches", World Scientific publishing Co. Ltd, 2000.						
5	Robert J.Schalkoff, "Pattern Recognition Statistical, Structural and Neural Approaches", John						
5.	Wiley & Sons Inc., New York, 1992.						
5.	R.O. Duda, P.E.Hart and D.G.Stork, "Pattern Classification", John Wiley, 2001.						
7.	S.Theodoridis and K.Koutroumbas, "Pattern Recognition", 4 th Ed., Academic Press, 2009.						

	Course Outcomes: Students will be able to							
CO1	Outline the concepts of supervised classifiers.							
CO2	Outline the concepts of Clustering.							
CO3	Classify the data and identify the patterns.							
CO4	Make use of feature set and select the features from given data set.							
CO5	Apply fuzzy logic and genetic algorithms for classification problems.							

M.E.

M23AET202-EMBEDDED SYSTEM DESIGN (Common to AE and VLSI)

L	Т	P	С
3	0	0	3

Course Objectives					
1.	To introduce the overview, design metrics and methodology of embedded systems.				
2.	2. To introduce architecture of single purpose processor.				
3.	To understand various protocols of embedded system.				
4.	To understand the State machine models.				
5.	To introduce software development tools				

UNIT- I	EMBEDDED SYSTEM OVERVIEW					
Embedded S	ystem Overview, Design Challenges — Optimizing Design Metrics,	Design				
Methodology,	RT-Level Combinational and Sequential Components, Optimizing Custom	Single-				
Purpose Proce	essors. REYOND					

UNIT-II GENERAL AND SINGLE PURPOSE PROCESSOR					
Basic Architecture, Pipelining, Superscalar and VLIW architectures, Programmer's view, Developm					
Environment,	Application - Specific Instruction- Set Processors(ASIPs) Microcontrollers,	Timers,			
Counters and	watchdog Timer, UART, LCD Controllers and Analog-to-Digital Converters, I	Memory			
Concepts.					

UNIT-III	BUS STRUCTURES	9
Basic Protoco	l Concepts, Microprocessor Interfacing - I/O Addressing, Port and Bus- Bas	sed I/O,
Arbitration, S	erial Protocols, I2C, CAN and USB, Parallel Protocols – PCI and ARMBus, V	Vireless
Protocols-IrD	A,Bluetooth,IEEE802.11.	

UNIT-IV	STATE MACHINE AND CONCURRENT PROCESSMODELS						9		
Basic State Machine Model, Finite-State Machine with Data path Model, Capturing State Machine in									
Sequential Pr	ogramming	Language,	Program-State	Machine	Model, Co	oncurrent I	Process	Model,	
Communication	n among	Processes,	Synchronization	among	processes,	Dataflow	Model,	Real-	
:Hardware/Software Co-Simulation, Reuse: Intellectual Property Cores, Design Process Models.									

UNIT-V	EMBEDDED SOFTWARE DEVELOPMENT TOOLS AND	9
	RTOS	

Compilation Process – Libraries – Porting kernels – C extensions for embedded systems –emulation and debugging techniques–RTOS–System design using RTOS.

Total Instructional hours:45

	Course Outcomes: Students will be able to				
CO1	Explain the design challenges and basic metrics of embedded system				
CO2	Explain the architecture and pipelining process				
CO3	Analyse different protocols				
CO4	Examine the state machine and design process models.				
CO5	Outline embedded software development tools and RTOS.				

	Reference Books						
1.	Bruce Powel Douglas, "Realtime UML, second edition: Developing efficient objects for embedded						
2	systems",3 rd Edition 1999, Pearson Education.						
2.	Daniel W.Lewis," Fundamentals of embedded software where C and assembly meet", Pearson Education, 2002.						
3.	Frank Vahidand Tony Gwargie, "Embedded System Design", John Wiley &sons, 2002.						
4	SteveHeath, "Embedded System Design", Elsevier, Second Edition, 2004.						
5	Bruce Powel Douglas, "Realtime UML, second edition: Developing efficient objects for embedded systems", 3 rd Edition1999, Pearson Education.						

		M23VDE305 - MEMS AND NEMS		T	P	C	
B.E			3	0	0	3	
		Course Objectives					
1.	To intro	duce the concepts of micro-electromechanical devices.					
2.	To know	the fabrication process of Microsystems.					
3.	To know	the design concepts of micro sensors.					
4.	To know	the design concepts of micro actuators.					
5.	To famil	iarize concepts of quantum mechanics and nano systems.					
UNI	T- I	INTRODUCTION AND FABRICATION OF	MEMS	8		9	
MEMS	and Mic	crosystems, Miniaturization, Typical products, Micro senso	rs, Mic	ro actua	ation, N	IEMS	
vith mi	cro actu	ators, Micro-accelerometers and Micro fluidics, Materials	for ME	MS: Si	licon, s	ilicon	
	ınds, pol	ymers, metals. Photolithography, Ion Implantation, Diffusion	on, Oxi	dation,	Dry an	d wet	
ompou	etching, Bulk Micromachining, Surface Micromachining, LIGA.						
•	Bulk M	,					
•		INTRODUCTION AND FABRICATION OF	NEMS	S		9	
uni	Г- II				pplicati		
UNITED	Γ- II ction to	INTRODUCTION AND FABRICATION OF	d mater	rials, A			

UNIT- III DESIGN OF MEMS SENSORS AND ACTUATORS 9

Acoustic sensor – Quartz crystal microbalance, Surface acoustic wave, Flexural plate wave, shear horizontal; Vibratory gyroscope, Pressure sensors, Electrostatic actuators, piezoelectric actuators, Thermal actuators, Actuators using shape memory alloys, Microgrippers, Micromotors, Microvalves, Micropumps.

UNIT- IV RF AND BIO MEMS 9

Introduction to RF MEMS technologies: Need for RF MEMS components in communications, space and defense applications, Materials and fabrication technologies, Special considerations in RF MEMS design. Case studies: Micro-switches BioMEMS- Drug delivery, Electronic nose, Bio chip.

UNIT- V NANOSYSTEMS AND QUANTUM MECHANICS 9

Atomic Structures and Quantum Mechanics, Molecular and Nanostructure Dynamics: Schrodinger Equation and Wave function Theory, Density Functional Theory, Nanostructures and Molecular Dynamics, Electromagnetic Fields and their quantization, Molecular Wires and Molecular Circuits.

Total Instructional hours: 45

	Reference Books						
1.	1. Ran Hsu, MEMS and Microsystems Design and Manufacture, Tata McGraw Hill, 2002.						
2.	Murty B.S, Shankar P, Raj B, Rath, B.B, Murday J, Textbook of Nanoscience and						
2.	Nanotechnology, Springer publishing, 2013						
3.	Sergey Edward Lyshevski, "MEMS and NEMS: Systems, Devices, and Structures", CRC						
J.	Press, 2002						
4.	Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006.						
5.	Vinod Kumar Khanna Nanosensors: Physical, Chemical, and Biological, CRC press,2012.						
6.	6. Mahalik N P, MEMS, Tata McGraw Hill, 2007.						
7.	Manouchehr E Motamedi, MOEMS: Micro-Opto-Electro-Mechanical Systems, SPIE						
/.	press, First Edition, 2005.						

	Course Outcomes: Students will be able to			
CO1	Outline the concepts of micro-electromechanical devices			
CO2	Explain the fabrication process of Microsystems			
CO3	Design the concepts of micro sensors			
CO4	Design the concepts of micro actuators			
CO5	Explain concepts of quantum mechanics and nano systems			

	M23AET203 – HARDWARE-SOFTWARE	L	Т	P	С
M.E.	CO- DESIGN (Common to VLSI & AE)	3	0	0	3

	Course Objectives				
1.	To acquire the knowledge about system specification and modelling.				
2.	To learn the formulation of partitioning.				
3.	To learn the co-synthesis.				
4.	To study the different technical aspects about proto typing and emulation.				
5.	To introduce the design specification and verification.				

UNII-I		SYSTEM SI	PECIFICATIO	<u>JN AND MOI</u>	DELI	JING		9
Embedded S	ystems,	Hardware/Software	Co-Design,	Co-Design	for	System	Specification	and
Modeling,Co-	Design f	or Heterogeneous Im	plementation-	-Single-Proce	ssor	Architect	ures with one A	ASIC
and many AS	ICs, Mu	lti-Processor Archite	ectures, Comp	oarison of Co	- De	sign App	roaches, Mode	els of
Computation,	Requirer	ments for Embedded	System Specia	fication				

UNIT- II	HARDWARE / SOFTWARE PARTITIONING	9
The Hardware	e /Software Partitioning Problem, Hardware –Software Cost Estimation, Generation of	of the
Partitioning (Graph, Formulation of the HW/SW Partitioning Problem, Optimization, HW	V/SW

UNIT- III HARDWARE/SOFTWARE CO-SYNTHESIS 9

Partitioning based on Heuristic Scheduling, HW/SW Partitioning based on Genetic Algorithms

The Co-Synthesis Problem, State-Transition Graph, Refinement and Controller Generation, Co-Synthesis Algorithm for Distributed System- Case Studies with any one application.

UNIT- IV	PROTOTYPING AND EMULATION	9
Introduction, I	Prototyping and Emulation Techniques, Prototyping and Emulation Environments,	Future
Developments	in Emulation and Prototyping ,Target Architecture-Architecture Specia	lization
Techniques, S	System Communication Infrastructure, Target Architectures and Application	System
Classes, Arch	itectures for Control-Dominated Systems, Architectures for Data-Dominated S	Systems
,Mixed System	ns and Less Specialized Systems.	

UNIT- V	DESIGN SPECIFICATION AND VERIFICATION	9
Concurrency,	Coordinating Concurrent Computations, Interfacing Components, Verification	
,Languages for	System-Level Specification and Design System-Level Specification ,Design Repres	sentatio
for System Le	evel Synthesis, System Level Specification Languages, Heterogeneous Specification	tion ar
Multi-Languag	ge Co-simulation.	
	Total Instructional hou	urs:45

	Course Outcomes: Students will be able to				
CO1	Outline the system specification and modeling				
CO2	Explain the partitioning and scheduling Algorithm				
CO3	Explain the co-synthesis algorithm				
CO4	Compare various architectures of prototyping and emulation				
CO5	Analyze about the design specification and validate its functionality by simulation				

	Reference Books						
1.	Giovanni De Micheli,Rolf Ernst Morgon,"Reading in Hardware/Software Co-Design",KaufmannPublishers,2001.						
2.	Jorgen Staun strup, Wayne Wolf, "Hardware / Software Co-Design": Principles and Practice", Kluwer Academic Pub, 1997.						
3.	RalfNiemann,"Hardware / Software Co-Design for Data Flow Dominated Embedded Systems", Kluwer Academic Pub, 1998.						
4	Giovanni De Micheli, Rolf Ernst Morgon, "Reading in Hardware / Software Co-Design", Kaufmann Publishers, 2001.						

M.E.	M23AEE205-ROBOTICS	L	T	P	С
		3	0	0	3

	Course Objectives				
1.	To understand robot locomotion and mobile robot kinematics.				
2.	To understand perception in robotics.				
3.	To study mobile robot localization				
4.	To learn the mobile robot mapping.				
5.	To study robot planning and navigation				

UNIT - I	LOCOMOTION AND KINEMATICS	9
Introduction t	o Robotics-key issues in robot locomotion-legged robots-wheeled mobile rol	oots —
aerial mobile	robots — introduction to kinematics — kinematics models and constraints-	-robot
maneuverabi	lity	

UNIT-II	ROBOT PERCEPTION	9
Sensors for n	nobile robots-vision for robotics-cameras-image formation-structure from s	tereo-
structure fron	n motion—optical flow—color tracking—place recognition—range data.	

UNIT-III			MOBILE	RO	BOT	LOCALIZ	ZATION			9
Introduction	to	localizatio	n-challenges	in	loca	lization–lo	ocalizatio	on and	d navigatio	n-belief
representation	1 – m	ap represer	ntation – proba	abilis	stic m	ap-based l	ocalizati	on – M	arkov localiz	zation —
EKF localiza	ation	– UKF	localization		Grid	localizat	ion —	Monte	Carlolocali	zation-
localization i	n dyr	namic envi	ronments.							
	Introduction representation EKF localiz	Introduction to representation – m	Introduction to localization representation — map represented EKF localization — UKF	Introduction to localization—challenges representation — map representation — proba	Introduction to localization—challenges in representation — map representation — probabilist EKF localization — UKF localization —	Introduction to localization—challenges in local representation—map representation—probabilistic materials and the second	Introduction to localization—challenges in localization—localization—frepresentation—map representation—probabilistic map-based leteralization—UKF localization—Grid localization	Introduction to localization—challenges in localization—localization representation — map representation — probabilistic map-based localization EKF localization — UKF localization — Grid localization —	Introduction to localization—challenges in localization—localization and representation — map representation — probabilistic map-based localization — M EKF localization — UKF localization — Grid localization — Monte	Introduction to localization—challenges in localization—localization and navigation representation — map representation — probabilistic map-based localization — Markov localization — UKF localization — Grid localization — Monte Carlolocalization — when the control of the cont

UNIT-IV	MOBILE ROBOT MAPPING	9	
Autonomous	map building-occupancy grip mapping-MAP occupancy mapping-SLAM,-ex	tended	
Kalman Filte	er SLAM — graph-based SLAM — particle filter SLAM— sparse ex	tended	
information f	ilter–fast SLAM algorithm.		

UNIT-V	PLANNING AND NAVIGATION	9		
Introduction to	o planning and navigation-planning and reacting-path planning-obstacle avoid	ance		
techniques—navigation architectures—basic exploration algorithms.				
	Total Instructional ho	urs:45		

	Course Outcomes:Students will be able to
CO1	Explain robot locomotion, kinematics models and constraints.
CO2	Analyze the vision algorithms for robotics
CO3	Test robot localization techniques
CO4	Test robot mapping techniques
CO5	Analyze the planning and exploration algorithms
	C. T.

	Reference Books				
1.	Gregory Dudek and MichaelJenkin,"Computational Principles of Mobile Robotics",				
	Second Edition, Cambridge University Press, 2010.				
2.	Howie Chosetet al., "Principles of Robot Motion: Theory, Algorithms, and				
	Implementations", ABradford Book, 2005				
3.	MajaJ. Mataric, "The Robotics Primer", MIT Press, 2007.				
4.	RolandSeigwart, IllahReza Nourbakhsh, and Davide Scaramuzza,"Introduction to				
	autonomous mobile robots", Second Edition, MIT Press, 2011.				
5.	SebastianThrun,WolframBurgard, and DieterFox,"Probabilistic Robotics", MIT Press,				
	2005.				

T P \mathbf{C} L **M23VDE306 – MACHINE LEARNING AND** B.E ALGORITHM DESIGN 3 0 0 3 **Course Objectives** To understand the concepts and mathematical foundations of machine learning and types of 1. problems tackled by machine learning To explore the different supervised learning techniques including ensemble methods 2. To learn different aspects of unsupervised learning and reinforcement learning 3. To compare the k means and hierarchal clustering technique To know the selection of algorithm for specific applications. 5. INTRODUCTION AND MATHEMATICAL **UNIT-I** 9 **FOUNDATIONS** What is Machine Learning? Need –History – Definitions – Applications - Advantages, Disadvantages & Challenges -Types of Machine Learning Problems – Mathematical Foundations - Linear Algebra & Analytical Geometry -Probability and Statistics- Bayesian Conditional Probability -Vector Calculus & Optimization - Decision Theory - Information theory **UNIT-II** SUPERVISED LEARNING 9 Introduction-Discriminative and Generative Models -Linear Regression - Least Squares -Under-fitting Overfitting -Cross-Validation – Lasso Regression- Classification - Logistic Regression- Gradient Linear Models -Support Vector Machines –Kernel Methods -Instance based Methods - K-Nearest Neighbors Tree based Methods –Decision Trees –ID3 – CART - Ensemble Methods –Random Forest - Evaluation of Classification Algorithms

UNIT- III UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING	9
--	---

Introduction - Clustering Algorithms -K - Means - Hierarchical Clustering - Cluster Validity -Dimensionality Reduction – Principal Component Analysis – Recommendation Systems - EM algorithm. Reinforcement Learning – Elements -Model based Learning – Temporal Difference Learning IC.

UNIT- IV MAIN ALGORITHMS USED IN ML	9
-------------------------------------	---

Linear Regression, Decision Trees, K-nearest Neighbour, Collaborative Filtering, Dimensionality Reduction Technique, Logistic Regression, Support Vector Machine.

UNIT- V	NAIVES BAYES	0
UINII-V	NAIVES BAYES	9

Conditional Probability and Its Intuition, Bayes' Theorem, Naive Bayes -With One Feature, Conditional Independence in Naive Bayes, Deciphering Naive Bayes, Introduction - Naive Bayes for Text Classification, Document Classifier - Pre Processing Steps, Document Classifier - Worked out Example, Laplace Smoothing.

Total Instructional hours: 45

Text Books				
1.	APPLIED MACHINE LEARNING by M. GOPAL, MC GRAW HILL			
2.	Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, Mathematics for Machine Learning,			
	Cambridge University Press (23 April 2020)			
3.	Tom M. Mitchell- Machine Learning - McGraw Hill Education, International Edition			

Reference Books				
	Introduction To Machine Learning With Python by Andreas C. Müller, SARAH GUIDO,			
1.	O Reilly Publishing.			
2	Trevor Hastie, Robert Tibshirani, and Jerome Friedman - The Elements of Statistical Learning:			
2.	Data Mining, Inference, and Prediction - Springer, 2nd edition.			

	Course Outcomes: Students will be able to				
CO1	Understand the fundamental concepts and mathematical foundations of machine learning and types of problems tackled by ML techniques				
CO2	Applying different supervised learning techniques like Regression, Classification and SVM including ensemble methods				
CO3	Analyzing different unsupervised learning techniques and reinforcement learning.				
CO4	Appreciate the mathematical background behind popular ML algorithms.				
CO5	Ensure awareness about importance of conditional algorithms, Classifier and Naive Bayes concepts in ML				

M.E. M23VDP301 - PRO	M22VDD201 DDQJECT WQDIZ (DJJACE I)	L	Т	P	С
	M23VDP301 - PROJECT WORK (PHASE I)	0	0	12	6

Course Objectives:

- 1. To enable a student to do an individual project work this may involve design, modelling, simulation and/or fabrication.
- 2. To analyse a problem both theoretically and practically.
- 3. To motivate the students to involve in research activities leading to innovative solutions for industrial and societal problems.

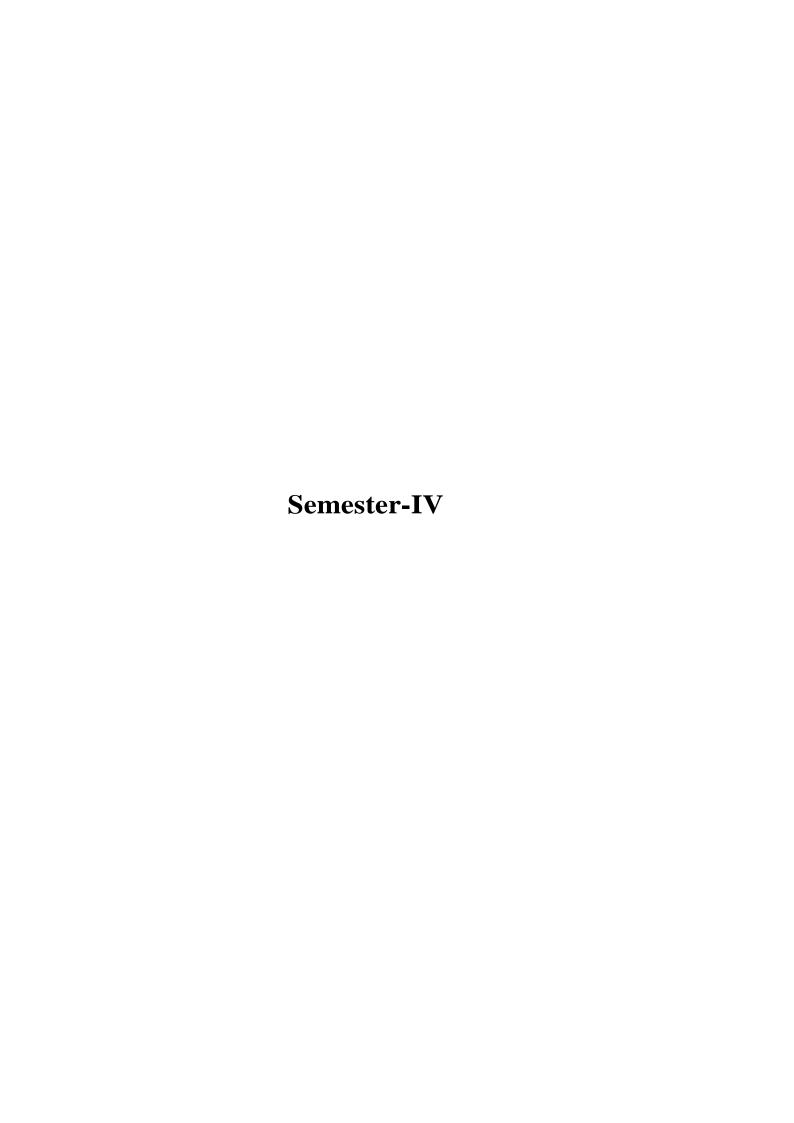
COURSE DESCRIPTION:

Project work shall be carried out by each and every individual student under the supervision of a faculty of this department. A student may however, in certain cases, be permitted to work for the project in association with other departments or in an Industrial/Research Organization, on the recommendation of the Head of the Department. In such cases, the project work shall be jointly supervised by a faculty of the Department and an Engineer / Scientist from the organization. The student shall meet the supervisor periodically and attend the periodic reviews for evaluating the progress.

Project work will be carried out in two phases, Phase-I during the third semester and Phase-II during the final semester. Phase-I shall be pursued for a minimum of 12 periods per week and Phase — II in 24 periods per week. In each phase, there will be three reviews for continuous internal assessment and one final review and viva voce at the end of the semesters. The Project Report prepared according to approved guidelines and duly signed by the supervisor(s) and the Head of the Department shall be submitted to the concerned department.

Course Outcomes:

Students will be able to


CO1: Identify the area, narrow dine the problem and understand the problem thoroughly and provide an appropriate solution.

CO2: Show the systematic literature survey which helps to build the knowledge in the chosen field by using the existing journal references

CO3: Construct a mathematical model for the system under study.

CO4: Choose and get proficiency over the software for simulation and analysis.

CO5: Utilize the findings of the phase I work in conferences/journals.

M.E.	M23VDP401 - PROJECT WORK (PHASE II)	L	T	P	С
		0	0	24	12

Course Objectives:

- 1. To enable a student to do an individual project work this may involve design, modelling, simulation and/or fabrication.
 - 2. To analyse a problem both theoretically and practically.
 - 3. To motivate the students to involve in research activities leading to innovative solutions for industrial and societal problems.

COURSE DESCRIPTION:

Project work shall be carried out by each and every individual student under the supervision of a faculty of this department. A student may however, in certain cases, be permitted to work for the project in association with other departments or in an Industrial/Research Organization, on the recommendation of the Head of the Department. In such cases, the project work shall be jointly supervised by a faculty of the Department and an Engineer / Scientist from the organization. The student shall meet the supervisor periodically and attend the periodic reviews for evaluating the progress.

Project work will be carried out in two phases, Phase-I during the third semester and Phase-II during the final semester. Phase-I shall be pursued for a minimum of 12 periods per week and Phase — II in 24 periods per week. In each phase, there will be three reviews for continuous internal assessment and one final review and viva voce at the end of the semesters. The Project Report prepared according to approved guidelines and duly signed by the supervisor(s) and the Head of the Department shall be submitted to the concerned department.

Course Outcomes:

Students will be able to

CO1: Identify the area, narrow dine the problem and understand the problem thoroughly and provide an appropriate solution.

CO2: Show the systematic literature survey which helps to build the knowledge in the chosen field by using the existing journal references

CO3: Construct a mathematical model for the system under study.

CO4: Choose and get proficiency over the software for simulation and analysis.

CO5: Utilize the findings of the phase I work in conferences/journals.